

Hugo André Ferreira da Silva

Management and Analysis Platform
for Data Based in Blockchain
Technology

July 2021

2

Hugo André Ferreira da Silva

Management and Analysis Platform for

Data Based in Blockchain Technology

Master Dissertation

Integrated Master in Engineering and Management of

Information Systems

Work done on the orientation of

Professor Doutor Manuel Filipe Vieira Torres

dos Santos

Professor Tiago André Saraiva Guimarães

July de 2021

Direitos de autor e condições de utilização do trabalho

por terceiros

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas

as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e

direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo

indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em

condições não previstas no licenciamento indicado, deverá contactar o autor, através do

RepositóriUM da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição-NãoComercial-SemDerivações
CC BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/

Management and Analysis Platform for Data Based in Blockchain Technology i

Acknowledgments

Throughout the writing of this dissertation, I have received a great deal of support and

assistance from a group of people that I would like to mention.

I would first like to thank my supervisors, Professor Manuel Filipe Santos and Professor

Tiago Guimarães for giving me the opportunity to investigate blockchain technology.

I would also like to thank both my mother, father, and sister for their unconditional support

and motivation.

In addition, I would like to thank both my grandfather and grandmother for motivating me

to pursue and finish this dissertation.

Lastly, I want to thank all my friends who helped me during the most complicated phases.

Management and Analysis Platform for Data Based in Blockchain Technology ii

Statement of Integrity

I hereby declare having conducted this academic work with integrity. I confirm that I have

not used plagiarism or any form of undue use of information or falsification of results along the

process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the

University of Minho.

Management and Analysis Platform for Data Based in Blockchain Technology iii

Abstract

Managing and sharing sensitive clinical data requires special attention and a specific set

of rules that ensure its authenticity, privacy, and security. Currently, many healthcare systems have

this problem, in the sense that they do not ensure data immutability. This project aims to develop

a solution that not only combines the mandatory guarantee of data immutability and veracity, but

also a controlled and secure way of querying data. In short, this topic consists of a software

development project based on blockchain technology that aims to provide a solution, which in turn

aims to raise the reliability and authenticity of data in the healthcare domain. In addition, a state

of art about the various concepts of Blockchain technology and its components, algorithms, and

frameworks that allow its development will be described. The methodology used for this project is

the Design Science Research.

In this research, a Blockchain Network for the Healthcare environment was implemented

as well as some blockchain-related tools for benchmarking and data visualization. Hyperledger

Fabric is used as the framework for blockchain development. Hyperledger Caliper and Prometheus

are used for blockchain benchmarking and Blockchain Explorer is used for blockchain data

visualization. Moreover, a REST API was developed to facilitate communication with the blockchain

system.

Every step of the development is documented and analyzed.

Key Word: Blockchain, Healthcare, Tracking, Technology

Management and Analysis Platform for Data Based in Blockchain Technology iv

Management and Analysis Platform for Data Based in Blockchain Technology v

Resumo

A gestão e disponibilização de dados muito sensíveis como os clínicos, requer uma

especial atenção e um conjunto regras muito específicas que garantam a sua autenticidade,

privacidade e segurança. Vários sistemas de saúde apresentam este problema, na medida em que

não garantem a imutabilidade dos dados. Com este projeto, procura-se desenvolver uma solução

que combine não só a obrigatoriedade de garantir a imutabilidade e veracidade dos dados clínicos

como uma controlada e segura consulta dos mesmos. Concluindo, este tema consiste num projeto

de Desenvolvimento de software, que pretende disponibilizar uma solução que contribua para

aumentar a fiabilidade e a veracidade dos dados em contexto hospitalar com recurso a tecnologia

blockchain. Posteriormente, será descrito um estado de arte sobre os vários conceitos inerentes à

tecnologia blockchain e seus componentes, algoritmos e arquiteturas que permitem o seu

desenvolvimento. A metodologia utilizada para este projeto é a Design Science Research.

Nesta investigação, foi implementada uma Blockchain Network para a área da Saúde, bem

como algumas ferramentas relacionadas com a Blockchain para o benchmarking e visualização

de dados. O Hyperledger Fabric é utilizado como estrutura para o desenvolvimento da blockchain.

O Hyperledger Caliper e Prometheus são utilizados para o benchmarking da blockchain e o

Blockchain Explorer é utilizado para a visualização de dados. Consequentemente, uma API REST

foi desenvolvida para facilitar a comunicação com o sistema blockchain.

Cada passo do desenvolvimento está documentado e analisado.

Palavras Chave: Blockchain, Saúde, Tracking, Tecnologia

Management and Analysis Platform for Data Based in Blockchain Technology vi

Table of Contents

Acknowledgments .. i

Statement of Integrity .. ii

Abstract ... iii

Resumo .. v

Index of Tables ... ix

Index of Figures .. ix

Acronyms .. xii

1. Introduction ... 1

1.1. Document Structure ... 1

2. Objectives .. 2

3. State of Art .. 3

3.1. Information Systems in Healthcare ... 3

3.2. Blockchain ... 4

3.2.1. Introduction ... 4

3.2.2. Blockchain Structure .. 11

3.2.3. Public Blockchain – Permissionless.. 13

3.2.4. Private Blockchain – Permissioned ... 14

3.2.5. Private Blockchain vs Public Blockchain ... 15

3.2.6. Consensus Algorithms ... 16

3.3. Blockchain in Healthcare.. 19

3.4. Frameworks that support Blockchain development 21

3.4.1. Hyperledger Fabric .. 21

3.4.2. Hyperledger Composer .. 22

3.4.3. Hyperledger Convector... 22

3.5. Tools for Blockchain Benchmarking .. 23

Management and Analysis Platform for Data Based in Blockchain Technology vii

3.5.1. Hyperledger Caliper ... 23

3.5.2. Blockbench.. 24

3.5.3. Prometheus ... 25

4. Research Methodologies .. 27

4.1. Design Science Research ... 27

5. Project Development .. 30

5.1. Tools and Frameworks used ... 30

5.1.1. Hypeledger Fabric .. 31

5.1.2. Hyperledger Caliper ... 31

5.1.3. Prometheus and Grafana ... 31

5.1.4. Blockchain Explorer ... 31

5.1.5. Visual Studio Code ... 32

5.1.6. Go Language ... 32

5.1.7. NodeJS.. 32

5.1.8. Postman .. 32

5.2. Prerequisites .. 33

6. Results and Discussion .. 37

6.1. Network Structure .. 37

6.2. Hyperledger Fabric... 38

6.3. REST API ... 48

6.3.1. API Architecture ... 48

6.3.2. Register User and Authentication Token ... 49

6.3.3. Create Beacon (createBeacon) ... 51

6.3.4. Create Doctor (createMedico) ... 52

6.3.5. Create Patient (createDoente) .. 53

6.3.6. Create Medical Device (createDispMedico) ... 54

Management and Analysis Platform for Data Based in Blockchain Technology viii

6.3.7. Change Beacon room property (changeBeaconSala) 55

6.3.8. Change Patient room property (changeDoenteSala) 56

6.3.9. Change Medical Device room property(changeDispMedSala) 57

6.3.10. Change Medical Device doctor property (changeDispMedMedico) 58

6.3.11. Change Medical Device patient property (changeDispMedDoente) 59

6.3.12. Get History of Asset (getHistoryForAsset) .. 60

6.4. Blockchain Explorer ... 63

6.5. Hyperledger Caliper ... 67

6.6. Prometheus and Grafana ... 70

7. Benchmarking ... 73

8. Conclusion .. 82

9. References .. 84

 Management and Analysis Platform for Data Based in Blockchain Technology ix

Index of Tables

Table 1 - A comparison of popular blockchain consensus mechanisms (Baliga, 2017) . 19

Table 2 - API structure table diagram .. 42

Table 3 - Functions for asset creation and asset state change 43

Table 4 - API requests .. 48

Index of Figures

Figure 1 - Transaction through an intermediary vs. peer-to-peer transaction (Singhal et al.,

2018) .. 5

Figure 2 - Various layers of blockchain (Singhal et al., 2018) ... 7

Figure 3 - Block attributes in a Blockchain system (Mohanta et al., 2019).................... 11

Figure 4 - Blocks in a blockchain linked through hash pointers (Singhal et al., 2018) ... 12

Figure 5 - Hashes not matching if one hash is altered (Singhal et al., 2018) 12

Figure 6 - Simplified permissionless blockchain architecture (Lin & Liao, 2017) 13

Figure 7 - Simplified permissioned blockchain architecture (Lin & Liao, 2017) 14

Figure 8 - PBFT consensus approach (Singhal et al., 2018) ... 18

Figure 9 - Hyperledger Caliper Architecture, retrieved from (Hyperledger Caliper

Architecture, n.d.)... 24

Figure 10 - Architecture of Blockbench (Wang et al., 2019) ... 25

Figure 11 - Prometheus Architecture (Prometheus, 2019) ... 27

Figure 12 - Design Science Research diagram (Peffers et al., 2008) 30

Figure 13 - Peer command execution in order to validate the installation 37

Figure 14 - Blockchain Network Architecture ... 38

Figure 15 - Chaincode Lifecycle .. 41

Figure 16 - Smart Contract structs .. 44

Figure 17 - Smart Contract function createDispMedico .. 44

Figure 18 - Smart Contract function changeDispMedDoente .. 45

Figure 19 - Smart Contract function getHistoryForAsset ... 46

Figure 20 - Smart Contract Invoke method .. 47

Figure 21 - Create a User ... 50

 Management and Analysis Platform for Data Based in Blockchain Technology x

Figure 22 - Bearer Token being defined in the Create Beacon function 50

Figure 23 - createBeacon function API call .. 51

Figure 24 - createMedico function API call .. 52

Figure 25 - Medico_08 asset in the database .. 53

Figure 26 - createDoente function API call ... 53

Figure 27 - createDispMedico function API call .. 54

Figure 28 - changeBeaconSala function API call .. 55

Figure 29 - Beacon_10 asset in the database ... 56

Figure 30 - changeDoenteSala function API call ... 57

Figure 31 - Doente_11 asset in the database .. 57

Figure 32 - changeDispMedSala function API call .. 58

Figure 33 - changeDispMedMedico function API call .. 59

Figure 34 - changeDispMedDoente function API call .. 60

Figure 35 - Dispositivo_07 asset in the database .. 60

Figure 36 - getHistoryForAsset function API call .. 61

Figure 37 - Detailed view of the getHistoryForAsset response body for the Dispositivo_07

asset .. 62

Figure 38 - Blockchain Explorer Login screen .. 64

Figure 39 - Blockchain Explorer Dashboard ... 65

Figure 40 - Blockchain Explorer Transaction details ... 66

Figure 41 - Blockchain Explorer Block details .. 66

Figure 42 - Blockchain Explorer Chaincode details .. 66

Figure 43 - Blockchain Explorer channels .. 66

Figure 44 - Blockchain Explorer network participants ... 67

Figure 45 - Hyperledger Caliper CreateDispMedico function for random asset generation

 .. 68

Figure 46 - Hyperledger Caliper report .. 70

Figure 47 - Prometheus folder structure .. 71

Figure 48 - Prometheus .. 72

Figure 49 - Grafana .. 73

Figure 50 - Performance Metrics (1k transactions per function) 74

Figure 51 - Performance Metrics (10k transactiosn per function) 74

 Management and Analysis Platform for Data Based in Blockchain Technology xi

Figure 52- Average Send Rate vs Throughput .. 75

Figure 53 - Average Failed Transactions .. 76

Figure 54 - Max, Min and Average Latency for 100, 1k and 10K TPS 76

Figure 55 - Caliper container CPU usage during a benchmark 77

Figure 56 - Caliper container memory usage during a benchmark 78

Figure 57 - All blockchain related containers accumulated memory usage 78

Figure 58 - All blockchain related containers accumulated CPU usage 79

Figure 59 - Peer 1 Org 1 memory usage ... 80

Figure 60 - Peer 1 Org 1 CPU usage ... 80

Figure 61 - Peer 0 Org 1 memory usage ... 80

Figure 62 - Peer 0 Org 1 CPU usage ... 81

 Management and Analysis Platform for Data Based in Blockchain Technology xii

Acronyms

API – Application Programming Interface

CA – Certificate Authority

CPU – Central Processing Unit.

HTTP – Hypertext Transfer Protocol

IS – Information Systems

P2P – Peer to Peer

PBFT – Practical Byzantine Fault Tolerance

PoC – Proof of Concepts

PoS – Proof of Stake

PoW – Proof of Work

REST – Representational State Transfer

SUT – System Under Test

URL – Uniform Resource Locator

 Management and Analysis Platform for Data Based in Blockchain Technology xiii

Management and Analysis Platform for Data Based in Blockchain Technology 1

1. Introduction

Managing and sharing sensitive clinical data requires special attention and a specific set

of rules that ensure its authenticity, privacy, and security. Currently, many healthcare systems are

lacking in these aspects. Blockchain technology provides a solution for this problem as it

guarantees a chronological order of data as well as ensuring its authenticity, privacy, and security.

This project aims to develop a management and analysis platform for data based in

blockchain technology, that not only combines the mandatory guarantee of data immutability and

veracity, but also a controlled and secure way of querying data.

1.1. Document Structure

The first chapter includes a brief introduction to the dissertation topic, as well as the

motivation behind the project.

The second chapter contains the dissertation objectives, as well as the investigation

question.

The third chapter contains the state of art, where relevant concepts about the dissertation

topic are accounted for.

The fourth chapter includes the research methodologies used in this project.

The fifth chapter comprehends the development phase of the project. All the tools,

frameworks, and software are specified in this chapter, as well as the prerequisites necessary in

order to develop the solution.

The sixth chapter comprehends all the results obtained during the project.

Lastly, the seventh chapter contains the benchmarks and the respective graph analysis.

Management and Analysis Platform for Data Based in Blockchain Technology 2

2. Objectives

This chapter comprehends all the macro and micro objectives associated with this work.

This project aims to develop a solution that helps to improve healthcare data privacy,

veracity and reliability, by deploying a tamper-proof and immutable way of storing data. From this

assumption, the following investigation question was formulated:

In which way can Blockchain Technology be used, in the Healthcare context,

to develop a solution that ensures a tamper-proof, immutable, controlled, and secured

way of storing data in order to achieve healthcare data veracity, privacy, and

reliability?

1. Understand the requirements and necessities of the project;

2. Study the benefits and difficulties associated with the use of this type of technologies;

3. Understand the state of the art of blockchain solutions and architectures;

4. Study and comprehend the specific necessities that this type of solution raises;

5. Propose an architecture that provides a solution to the necessities and requirements

of the project;

6. Develop a functional prototype featuring Web API's and Blockchain.

Management and Analysis Platform for Data Based in Blockchain Technology 3

3. State of Art

This chapter addresses Information Systems and their relations to Healthcare, as well as

come concepts about the Blockchain technology and its components, algorithms, tools for

benchmarking, and frameworks that allow its development. Moreover, it will be described how

blockchain relates to healthcare and some benefits of blockchain’s use in healthcare will be pointed

out.

3.1. Information Systems in Healthcare

Healthcare has an effect on our quality of life and how we work in society. Mistakes have

serious consequences that can affect our ability to carry out social and productive endeavors. These

errors are expensive, increase the duration of a patient's stay in the hospital, and cost human lives.

Therefore, healthcare quality is diligently pursued and vigilantly executed, and IS can facilitate such

a goal by highlighting and tracking errors at different stages in the process of care.

Another aspect of healthcare information is that it is sensitive. As a consequence, any

information transfer between parties through technology is fraught with danger. For example, the

data might end up in the wrong hands. Electronic storage is perceived as having a higher likelihood

of leakage, thus patients’ perception of the probability of compromised privacy is often higher than

the actual probability. Therefore, it's critical to comprehend the contextual aspects that influence

people's willingness to provide medical information in an electronic format.

One of the obstacles to healthcare technology adoption is that influential players in the

industry often oppose it. Part of this arises from professional norms. They are more concerned with

treating the patient and disregard other activities.

The tension between the need for orderly routines and the need for flexibility to change in

local circumstances exists in the healthcare delivery environment. This tension magnifies both the

complexity and importance of effective learning and adaptation surrounding healthcare IS

implementation and use. For instance, systems and implementation techniques that work well in

one setting may fail in another.

From numerous points of view, learning and adjustment are two of a kind when it comes

to new IS. Learning is required to decide the best approach to adjust both technology and

organization to accomplish a solid match between the abilities the innovation manages and the

ideal examples of real use. When the required adjustments have been recognized, a distinctive sort

Management and Analysis Platform for Data Based in Blockchain Technology 4

of learning is required to fuse these adjustments into organizational routines and to guarantee

nonstop improvement. (Fichman et al., 2011).

According to (Victor, 2013), the General Data Protection Regulation proposes a range of

new individual rights designed to protect consumers whose personal information is collected,

processed, and stored by corporations and other entities. It establishes a consumer’s “right to be

forgotten” where entities that collect or process data must delete any data related to an individual.

3.2. Blockchain

This chapter talks about blockchain technology and every concept related to it, such as the

various types of blockchain and algorithms that are part of its structure.

3.2.1. Introduction

According to (Crosby et al., 2016), a blockchain is a decentralized database of records,

also known as a public ledger, that records transactions or digital events that participants exchange.

Each transaction must be verified by the consensus of most participants in the ledger. Moreover,

it's relevant to note that the blockchain contains a verifiable record of all the transactions made.

To demonstrate why blockchain provides a secure environment, we can use a basic analogy such

as “it is easier to steal a cookie from a cookie jar, kept in a secluded place, than stealing the cookie

from a cookie jar kept in a market place, being observed by thousands of people”.

A blockchain is a distributed ledger that keeps a permanent, tamper-proof record of

transactions. It relies on a peer-to-peer (P2P) network, hence it is considered completely

decentralized. Each node of the network maintains a copy of the ledger to prevent failures. All

copies are simultaneously updated and checked at the same time.

Blockchain was originally created to solve the double-spending problem in crypto-currency.

However, currently, numerous projects explore blockchain applications in multiple use cases and

use them as a safe and reliable way to build and manage a distributed database and keep track of

all digital transactions (Hammi et al., 2018).

According to (Singhal et al., 2018), blockchain is a distributed ledger system that allows

people to exchange value in a peer-to-peer fashion. It means that no trusted intermediary, such as

banks, brokers, or other escrow services, is required to act as a trusted third party.

Management and Analysis Platform for Data Based in Blockchain Technology 5

Figure 1 - Transaction through an intermediary vs. peer-to-peer transaction (Singhal et al., 2018)

There are various factors that characterize Blockchain systems. In what follows, important

characteristics in the aspects of deployments, implementation, and properties will be identified

(Viriyasitavat & Hoonsopon, 2019):

− Private, Public, and Permissioned Blockchain: The distinction among these types of

Blockchains is the scheme of ledger sharing and who can participate in a system.

Ledgers are shared and validated by a designated group of nodes in a private

Blockchain. Nodes that want to be a part of the system must first be initiated or

validated. Private Blockchain is best suited to closed networks in which all nodes are

completely trustworthy. A public Blockchain network is completely opened and

distributed. Anyone can participate or leave the system. Permissioned blockchains

are a combination of private and public blockchains in which several parties are

involved and the key nodes are carefully chosen at the outset. Permissioned

blockchain is ideal for semi-closed networks involving a few businesses that are often

structured as a consortium.

− Centralization and Decentralization: Blockchain technology is a promising solution to

the distributed transaction management problems, being conducted among peers in

P2P network. Public Blockchains operate in a fully decentralized environment,

allowing trust of the transactions to be established among previous unknown or

Management and Analysis Platform for Data Based in Blockchain Technology 6

untrusted nodes. To achieve the same stance, private blockchains run in a closed and

trusted environment and use access management techniques.

− Persistency: Transactions recorded in a Blockchain ledger are considered persistent

as they spread across the network, where each node maintains and controls its

records. Several properties are derived from this characteristic including

transparency, immutability, and tamper resistance.

− Validity: Unlike other distributed networks, blockchains do not require each node to

execute commands. Other nodes in a blockchain system will verify transactions or

blocks broadcasted. Any type of falsification can be detected easily.

− Anonymity and Identity: The key feature of public blockchains is anonymity. This

system's identity is not tied to a user's real-world identity. To avoid identity theft, a

single user may create multiple identities. There is no need for any central entity to

maintain private information. As a consequence, based on transaction details, a real-

world identity cannot be determined, retaining some privacy. On the other hand, in

settings such as private and permissioned blockchains, identification is normally

necessary for systems that are run and controlled by established entities.

− Auditability: The use of a recorded timestamp and persistent data allows for simple

verification and tracing of previous records through nodes in a Blockchain network.

Since nodes are managed, private blockchains are the least auditable. Permissioned

Blockchains, which are used by certain entities, come in second, because, some

agreements, such as encrypted data, can make it impossible for the information to

be fully accessed. Blockchains that are auditable and public rank highest because

nodes are genuinely distributed.

− Closedness and Openness: Public Blockchains rely on public nodes to maintain

records of transactions. Permissioned Blockchains are considered semi-opened as

nodes are pre-specified or validated before joining. The information in this blockchain

is governed by the consortium's policies, which can regulate whether the information

is completely accessible, partially open, or locked. Private blockchains, including

permissioned blockchains, use policies to govern how nodes are chosen and the

degree of data transparency. However, they rely on a single entity or owner.

Management and Analysis Platform for Data Based in Blockchain Technology 7

According to (Baliga, 2017), when looking for Blockchain to solve a determined business

problem, it is very important to look at the scale of the intended network, the relationships between

participants, and both functional and non-functional aspects before determining the right platform

and the right consensus model to use.

With its core characteristics, blockchain has shown its ability to disrupt conventional

industries. Anonymity and auditability are both benefits of decentralization. (Zheng et al., 2017).

According to(Singhal et al., 2018), there are five high-level layers in a blockchain. These

layers were formulated to gain a deeper understanding of the technology and provide a comparative

analogy between the hundreds of blockchain/cryptocurrency variants available on the market. The

following image (Fig. 2) shows the five layers of blockchain.

Figure 2 - Various layers of blockchain (Singhal et al., 2018)

− Application Layer: This is the layer where you code the desired functionalities and

transform them into a user-friendly program. Client-side programming constructs,

scripting, APIs, development frameworks, and other popular software development

technologies are commonly used. To put it another way, this definition ensures that

the heavy lifting is performed at the application layer, or that bulky storage

requirements are handled off the chain, allowing the main blockchain to be light and

efficient while network traffic is kept to a minimum.

− Execution Layer: The Execution Layer is where all of the nodes in a blockchain

network execute the instructions ordered by the Application Layer. Simple instructions

Management and Analysis Platform for Data Based in Blockchain Technology 8

or a collection of multiple instructions in the form of a smart contract may be used.

In this case, a program or a script must be run to ensure that the transaction is

completed correctly. The programs/scripts must be executed independently by each

node in a blockchain network. Deterministic execution of programs/scripts on the

same set of inputs and conditions consistently generates the same output across all

nodes, reducing inconsistencies.

− Semantic Layer: Since the transactions and blocks are ordered, the Semantic Layer

is a logical layer. A transaction has a series of instructions that pass through the

Execution Layer but are checked in the Semantic Layer, whether true or invalid. The

system's laws, such as data models and structures, can be described in this layer.

There may be circumstances that are more complicated than simple transactions.

Smart contracts also include complex instruction sets. When a smart contract is

invoked in response to a transaction, the system's state is changed. A smart contract

is a form of account that contains executable code as well as private states. A block

typically includes a number of transactions as well as some smart contracts. The

semantic layer specifies how the blocks are connected to one another. Any block in a

blockchain, all the way to the genesis block, contains the hash of the previous block.

− Propagation Layer: The Propagation Layer is a peer-to-peer communication layer

that enables nodes to discover one another, as well as communicate and sync with

one another about the current state of the network. We know that when a transaction

is completed, it is transmitted to the entire network. When a node proposes a valid

block, it is automatically propagated to the entire network, allowing other nodes to

expand on it and render it the most recent block. As a result, transaction/block

propagation in the network is specified in this layer, which ensures network stability.

Latency problems for transaction or block propagation are common in the

asynchronous Internet network. Depending on the power of the nodes, network

bandwidth, and a few other variables, some propagations happen in seconds and

others take longer.

− Consensus Layer: For most blockchain systems, the Consensus Layer serves as

the foundation. The primary aim of this layer is to get all the nodes to agree on one

clear state of the ledger. Depending on the use case, different methods for achieving

consensus among the nodes can exist. This layer ensures that the blockchain is safe

Management and Analysis Platform for Data Based in Blockchain Technology 9

and secure. In order for a decentralized blockchain to be self-sustaining, it must have

some kind of incentive system that not only keeps the network alive but also enforces

consensus. To choose a node that can propose a block, Bitcoin and Ethereum use a

Proof of Work (PoW) consensus method. There are several different variants of

consensus protocols such as Proof of Stake (PoS), deligated PoS s(dPoS), Practical

Byzantine Fault Tolerance (PBFT).

According to (Singhal et al., 2018), the advantages of decentralized systems like

blockchain systems over centralized systems are the following:

− Elimination of intermediaries

− Easier and genuine verification of transactions

− Increased security with lower cost

− Greater transparency

− Decentralized and immutable

Regarding blockchain adoption, different flavors of blockchain offerings, such as Ethereum

and Hyperledger, have been developed by some businesses. For instance, on their Azure and

Bluemix cloud platforms, Microsoft and IBM have established SaaS (Software as a Service)

offerings. Various startups were created, and several existing businesses adopted blockchain

projects aimed at solving certain business problems that had previously been difficult to solve. It

has had a major influence on the financial services industry. It's difficult to think of a major bank

or financial institution that isn't looking into blockchain Aside from the stock industry, projects are

now underway in fields such as media and entertainment, oil trading, prediction markets, retail

chains, loyalty incentive programs, and more insurance, distribution, and supply chains, as well as

medical records applications in the government and military. There are still some technological

difficulties. Blockchain is still in its early stages, thus mainstream adoption may take a few years

longer. There are currently several proposals to solve the scalability problems with blockchain

(Singhal et al., 2018).

According to (Singhal et al., 2018), the decentralized architecture of blockchain defies the

centralized design. The distinction between decentralized and centralized isn't always apparent.

They are often misunderstood and poorly described. The explanation for this is that there is almost

Management and Analysis Platform for Data Based in Blockchain Technology 10

no strictly centralized or decentralized structure. Consequently, three perspectives characterize

whether a system is centralizer or decentralized:

− Technical Architecture: From the standpoint of technological architecture, a

system may be centralized or decentralized. We take into account how many

physical computers (or nodes) are used to build a system, how many node failures

it can withstand before the entire system fails, and so on.

− Political perspective: This viewpoint describes how much power a person, a

group of people, or an entire organization has over a system. If they have power

over the system's computers, the system is necessarily centralized. In a political

context, though, if no individual person or party controls the system and everyone

has equal access to it, it is a decentralized system.

− Logical perspective: Regardless of whether a structure is theoretically or

politically centralized or decentralized, it may be logically centralized or

decentralized depending on how it looks. Another example is that if you vertically

split a system in half, with each half having service providers and customers, they

are decentralized if they can run as individual units and centralized if they can't.

All of the above viewpoints are important when developing a real-world system and

determining whether it is centralized or decentralized. The following examples help to clarify the

concept (Singhal et al., 2018):

− Corporates are architecturally centralized (one headquarters), politically centralized

(governed by a CEO or board of directors), and theoretically centralized. (It's

impossible to cut them in half.)

− Our communication language is decentralized from every viewpoint, architecturally,

politically, and logically. In general, when two people interact with each other, their

language is neither politically influenced nor logically dependent on the language of

other people's communication.

− BitTorrent and other torrent networks are also decentralized in almost any way.

Since any node can be a provider or a customer, the device can be cut in half and

still work.

Management and Analysis Platform for Data Based in Blockchain Technology 11

− The Content Delivery Network, on the other hand, is architecturally and technically

decentralized, but it is politically centralized due to corporate ownership. Amazon

CloudFront is an example.

− Let's take a look at blockchain right now. Blockchain aimed to allow for

decentralization. As a result, it is designed to be architecturally decentralized. From

a political standpoint, it is also decentralized and no one owns it. It is, however,

technically centralized since there is a single agreed-upon state and the whole

system acts as a single global device.

3.2.2. Blockchain Structure

According to (Mohanta et al., 2019), a block is a list of valid transactions in the Blockchain.

Any node in a Blockchain system may initiate a transaction, which is broadcast to all other nodes

in the network. The transaction is checked by network nodes using previous transactions, and then

the transaction is added to the current Blockchain. The following image (Fig 3) represents the block

structure present in the blockchain.

Figure 3 - Block attributes in a Blockchain system (Mohanta et al., 2019)

Every block is a descendant of the one before it. The Blockchain system uses the hash of

previous blocks to generate the hash of new blocks, making it tamper-proof (Mohanta et al., 2019).

Management and Analysis Platform for Data Based in Blockchain Technology 12

In the sense that it is a chain of blocks linked together, a blockchain is actually a blockchain

data structure.

The basic building block of the blockchain data structure is hash pointers. A hash pointer

refers to a cryptographic hash that points to a data block. The data block's hash is used as the

hash pointer. Hash pointers refer to the previous data block and allow you to check that the data

isn't tampered with. The hash pointer's goal is to create a tamper-proof blockchain that can be

used as a single source of evidence. The previous block's hash is stored in the current block header,

and the next block's hash, along with its block header, is stored in the header of the next block.

The following image (Fig. 4) represents the blocks and the respective hash pointers (Singhal et al.,

2018).

Figure 4 - Blocks in a blockchain linked through hash pointers (Singhal et al., 2018)

Every block, as can be seen, points to the block before it, referred to as "the parent block."

Any new block added to the chain serves as the parent block for the subsequent blocks. It goes all

the way to the “genesis block,” which is the first block in the blockchain to be formed. No one can

change data in any block in such a design where blocks are connected back with hashes. If the

data is changed, the hashes will not match. Any attempt to change the content of the Header or

Block breaks the entire chain. Assume that the data in block-1234 has been modified. If you do

this, the hash stored in block-1235's block header will not correspond. This can be visualized in

the image below (Fig. 5) (Singhal et al., 2018).

Figure 5 - Hashes not matching if one hash is altered (Singhal et al., 2018)

Management and Analysis Platform for Data Based in Blockchain Technology 13

This means that in order to alter the hash of one block you need to alter the subsequent

blocks. This must be done all the way through to the final or most recent hash. It is impossible to

hack into the majority of the networks and alter all the hashes at once because several others in

the network already have a copy of the blockchain and the most recent hash (Singhal et al., 2018).

3.2.3. Public Blockchain – Permissionless

Public blockchains, also known as, Permission-less ledgers, are open to the public and

allow anybody to participate as a node in the decision-making process. Users can, or not, be

rewarded for their participation. The ledgers are not owned by anyone and are publicly available

for everyone to participate in. Every user of the permission-less ledger maintains a copy of it on

their nodes and uses a distributed consensus mechanism in order to decide about the state of the

ledger. (Bashir, 2017)

According to (Lin & Liao, 2017), in public blockchains, everyone can check the transactions

and verify them, and also participate in the consensus process (Fig. 6).

Figure 6 - Simplified permissionless blockchain architecture (Lin & Liao, 2017)

According to (Hammi et al., 2018), Bitcoin is a cryptocurrency and a digital payment

system, based on a public blockchain. Each block has a list of its transactions stored in the header.

Every node in the network can be a miner and stores a copy of the current blockchain. Transactions

are recorded by order and have a timestamp associated. In order to validate the transactions,

Bitcoin uses a consensus mechanism. To make the mechanism resistant to attacks, Bitcoin uses

a PoW mechanism. This PoW represents a data processing challenge, that is costly and time-

consuming, and is executed for every new block. On the other hand, it’s simpler for others to verify

Management and Analysis Platform for Data Based in Blockchain Technology 14

it. In short, when a node sends a constructed block over the network, all the recipients verify the

block’s transactions as well as its PoW. If most of the network nodes agree upon a block, the latter

is validated and added to the blockchain. The block maker is rewarded after the remaining nodes

upgrade their blockchain copies.

Theoretically, Bitcoin blocks can be falsified only if more than half of the nodes in the

network are corrupted. This, however, is nearly impossible to achieve.

Etherenum is an innovative blockchain-based virtual machine that features stateful user-

created digital contracts (Olleros & Zhegu, 2016).

This public blockchain provides a cryptocurrency called Ether used for paying financial

transactions as well as application processing. For blocks’ validation, Ethereum uses a PoW

mechanism called Ethash, however, there’s also a beta version of Ethereum that uses the Casper

protocol, which is based on a PoS. When a miner creates a block, it sends it through the network

with its PoW. Some blocks are supposed to be generated at the same time. Therefore, it keeps the

first in its main chain and considers the others as Uncles. The chain that contains more Uncles is

kept as the main chain at the end of consensus. (Hammi et al., 2018)

3.2.4. Private Blockchain – Permissioned

Private blockchains, as the name implies are private. This type of blockchain is open only

to a consortium or group of individuals or organizations that have decided to share the ledger

among themselves (Bashir, 2017)

In private blockchains, a node is restricted. Not every node can participate in the

consensus. The blockchain has strict authority management on data access (Fig. 7) (Lin & Liao,

2017).

Figure 7 - Simplified permissioned blockchain architecture (Lin & Liao, 2017)

Management and Analysis Platform for Data Based in Blockchain Technology 15

Hyperledger is among the most popular private blockchains (Dinh et al., 2018).

According to (Cachin, 2016), Hyperledger Fabric is a distributed ledger framework for

running smart contracts using blockchain technology, leveraging technologies that are well-known

and well-proven, with a modular architecture that allows for pluggable implementations of different

functions. It is a blockchain platform aimed for business use and one of the multiple projects

currently in development under the Hyperledger Project. It's open-source and standards-based,

and it can run user-defined smart contracts. It's also built on a modular architecture with pluggable

consensus protocols, and it has solid security and identity features.

The fabric's distributed ledger protocol is controlled by peers. The fabric distinguishes

between two kinds of peers, validating peers and non-validating peers. A validating peer is

responsible for validating transactions, hence its designation. It also runs consensus. On the other

hand, non-validating peer functions as a proxy to connect clients, distribute transactions, to

validating peers. Although a non-validating peer does not perform transactions, it may check them.

Transactions can be public or confidential, depending on the nature of the data stored. As

a consensus method, Hyperledger utilizes the Practical Byzantine Fault Tolerant (PBFT). (Hammi

et al., 2018).

3.2.5. Private Blockchain vs Public Blockchain

There are two types of blockchain systems: public and private. Any node can enter and

exit the system in the former, making the blockchain fully decentralized and similar to a peer-to-

peer system. The blockchain enforces strict membership in the latter. There is an access control

process in place to decide who may enter the system. As a consequence, each node is

authenticated, and the other nodes are aware of its identity. (Dinh et al., 2018).

Typically, Public Blockchains use computational or memory complexity to achieve robust

consensus among a large number of untrusted peers while sacrificing transaction finality and

throughput. Permissioned, Private Blockchains, on the other hand, are opting for a less scalable

but far higher throughput model that ensures faster transaction completion. (Baliga, 2017).

Management and Analysis Platform for Data Based in Blockchain Technology 16

3.2.6. Consensus Algorithms

Regarding Consensus algorithms and according to (Bashir, 2017), there are two

categories:

− Proof-based, leader-based, or the Nakamoto consensus.

− Byzantine fault tolerance-based, which is a more traditional approach based on

rounds of votes.

3.2.6.1. Proof of Work (PoW)

This type of consensus algorithm relies on proof that enough computational resources have

been spent before proposing a value for acceptance in the network. This is used in Bitcoin and

other cryptocurrencies (Bashir, 2017).

According to (Zheng et al., 2018), each network node calculates a hash value of the

constantly changing block header in PoW. The measured value must be equal to or less than a

certain threshold, according to the agreement. When one node obtains the value, all other nodes

must mutually confirm the correctness of the value. Moreover, transactions in the new block are

validated to prevent fraud. At that point, the assortment of transactions utilized for the computations

is affirmed to be the validated outcome, which is denoted by a new block in the blockchain. The

nodes that execute these computations are called miners and the process of calculating is called

mining. Since this is a time-consuming process there is usually a reward associated, which is the

case of Bitcoin.

According to (Singhal et al., 2018), the PoW algorithm operates by doing some work on a

block of transactions before proposing it to the entire network. A Proof of Work (PoW) is a piece of

data that is difficult to generate in terms of computation and time but simple to check. If any

compute-intensive work needs to be done before generating a block, said work will be beneficial in

two ways: first, it can take some time, and second, if a node is attempting to insert a fraudulent

transaction into a block, rejection of that block by the majority of the nodes will be very expensive

for the one proposing the block because the computation used to obtain the PoW will be useless.

Proposing a node with a fraudulent transaction and being rejected would not have been a big deal

if it was done with almost no effort. Putting in the effort to propose a block prevents a node from

inadvertently injecting a fraudulent transaction. Also, the work's complexity should be adjustable

so that the rate at which the blocks are generated can be controlled.

Management and Analysis Platform for Data Based in Blockchain Technology 17

3.2.6.2. Proof of Stake (PoS)

This algorithm is based on the concept that a node has enough stake in the network

(Bashir, 2017).

Proof of stake algorithms was designed to overcome the disadvantages of Proof of Work

algorithms by replacing the mining operation with an alternative approach involving a user’s stake

in the blockchain system. The PoS algorithm pseudo-randomly selects validators for block creation,

thus ensuring that validators cannot predict their turn. (Baliga, 2017).

According to (Zheng et al., 2018), since it is assumed that people with more currencies

would be less likely to target the network, PoS needs people to show ownership of the amount of

currency. This may be unjust because the network's wealthiest member is inevitably powerful.

When compared to PoW, PoS uses less energy and is more effective. Unfortunately, since the cost

of mining is so low, attacks can occur as a result.

According to (Singhal et al., 2018), to engage in validating transactions in a PoS scheme,

validators must bond their stake. A validator's chance of creating a block is proportional to the

amount at stake. The higher the stake, the better their chance of validating a new block of

transactions. A validator just needs to show that they own a certain percentage of all coins in a

given currency system at any given time. For example, if a validator owns 2% of all Ether (ETH) in

the Ethereum network, they can validate 2% of all transactions. As a result, who gets to generate

the new transaction block is determined. PoS algorithms include naive PoS, delegated PoS, chain-

based PoS, BFT-style PoS, and Casper PoS, among others. In comparison to PoW systems, a PoS

system operates much faster because the maker of a block is deterministic, based on the sum at

stake. Furthermore, since there are no block incentives and only transaction fees, all digital

currencies must be generated at the outset, and their total value must remain constant throughout.

Since executing an attack will endanger the entire amount at stake, PoS systems could provide

better security against malicious attacks. PoS is less power-hungry than PoW, therefore the latter

is less prioritized when applicable.

3.2.6.3. Byzantine Fault Tolerance (PBFT)

This algorithm was the first to give a practical solution to achieve consensus in the face of

Byzantine failures. It uses a concept of a replicated state machine and voting by replicas for state

changes. It also includes signing and encryption of messages exchanged between replicas and

Management and Analysis Platform for Data Based in Blockchain Technology 18

clients. The algorithm requires “3f+1” replicas to be able to tolerate “f” failing nodes. This approach

translates into a good performance. However, its messaging overhead increases significantly as

the number of replicas increases. (Baliga, 2017)

According to (Zheng et al., 2018), a new block is decided in a round. The whole process

can be divided into three phases: pre-prepared, prepared, and commit. In each phase, a node is

eligible to go to the next phase if it has received votes from over 2/3 of all nodes thus, PBFT

requires that every node is known to the network.

According to (Singhal et al., 2018), the Practical Byzantine Fault Tolerance algorithm

(PBFT) is one of the many consensus algorithms that can be used in a blockchain application.

Hyperledger, Stellar, and Ripple are the only blockchain projects that use PBFT consensus. Similar

to PoS algorithms, PBFT is an algorithm that does not produce mining rewards, but the

technicalities of their respective implementations, however, are distinct. Requests are broadcast to

all participating nodes with their own replicas or internal states. When nodes receive a message,

they use their internal states to perform the computation. The computation's result is then

distributed to all other nodes in the system. As a result, each node is aware of what other nodes

are working on. They make a decision and agree to a final value, which is again spread across the

nodes, based on their own computation results as well as those obtained from the other nodes. At

this time, every node is aware of all other nodes' final decisions. Then they all answer with their

final decisions, and the final consensus is reached based on the majority. Based on the effort

needed, PBFT can be more effective than other consensus algorithms. Nevertheless, because of

the way this algorithm is constructed, the system's privacy could be adversely affected. Even in

non-blockchain contexts, it is one of the most commonly used consensus algorithms.

The following image (Fig. 8) demonstrates the process.

Figure 8 - PBFT consensus approach (Singhal et al., 2018)

Management and Analysis Platform for Data Based in Blockchain Technology 19

3.2.6.4. Comparative analysis

In this chapter, a table (Table 1) will resume the comparative analysis between the

previously explained algorithms, according to (Baliga, 2017).

Table 1 - A comparison of popular blockchain consensus mechanisms (Baliga, 2017)

 PoW PoS PBFT

Blockchain type Permissionless Both Permissioned

Transaction

finality
Probabilistic Probabilistic Immediate

Transaction rate Low High High

Cost of

participation
Yes Yes No

Scalability of peer

network
High High Low

Trust model Untrusted Untrusted Semi-trusted

Adversary

Tolerance
<=25%

Depends on specific

algorithm used
<=33%

3.3. Blockchain in Healthcare

The use of blockchains as an underlying medium for Health Information Exchange (HIE),

or health transactions between patients, providers, payers, and other relevant parties, is the most

talked-about among healthcare applications (Kuo et al., 2017).

Hospitals must communicate through an exchange of health information throughout the

process of managing and treating patients since health interoperability is centered on the

transmission of data between peers. Nevertheless, increased interoperability poses new issues and

demands in terms of security and privacy, as well as technology and governance. Solving these

issues, which are currently unsolved for traditional interoperability, is part of the problem

(Guimarães et al., 2020).

Management and Analysis Platform for Data Based in Blockchain Technology 20

Many research and ongoing initiatives are focusing on using blockchains to exchange

patient care data in order to enhance medical record management. Another critical goal is to

validate claim transactions to facilitate healthcare funding tasks such as preauthorization payment,

alternative payment models, automated claims using Fast Healthcare Interoperability Resources

and smart contracts, and Smart Health Profile to better control Medicaid beneficiaries' frequent

exit and reentry due to eligibility adjustments. Many researchers also consider using blockchain

technology and blockchain-based data exchange networks to speed up secondary uses of clinical

data.

Besides exploiting blockchains as ledgers of patient care data, many studies and projects

have also proposed using them to store various types of healthcare-related data, such as genomic

and precision medicine data, patient-centered or patient-related outcomes data, provider/patient

directories and care plans data, clinical trial data, patient consent data, pharmaceutical supply

chain data, and biomarker data.

There are many benefits of blockchain implementation to advance healthcare data ledgers.

The following list comprehends these benefits and the impact it has in healthcare systems (Kuo

et al., 2017):

− Decentralized Management: All data is stored in a decentralized manner, with no

single entity storing or having singular authority to access

− Immutable Audit Trail: Unchangeable log of clinical research protocols

− Data Provenance: Ensure original manufacturer and ownership transferring in

pharmaceutical supply chain

− Robustness/Availability: Improved robustness for counterfeit drug

prevention/detection systems in the pharmaceutical supply chain

− Security/Privacy: Higher patient confidence in consent recording systems since

patients can add consent statements at any point in their care journey

Blockchain also supports the acceleration of healthcare research. Benefits include:

− Improved care data sharing and analysis without ceding control

− Trackable and timestamped patient-generated data

− Superior healthcare data availability

Management and Analysis Platform for Data Based in Blockchain Technology 21

− Secured and privacy-preserving health care data sharing

However, there are so many challenges that should be considered when adopting

blockchain technology in the healthcare domain.

The first challenge is related to transparency and confidentiality. In a blockchain network,

everyone can see everything, so there is high transparency and low confidentiality. Open

transparency of information during a transaction is usually considered a limitation of blockchain.

Moreover, even if a user is anonymized by using hash values, the user may still be identified

through the inspection and analysis of the publicly available transaction information on the network.

This issue is critical for healthcare applications because patient-related data is highly sensitive.

The second challenge is speed and scalability. Transaction times can be long, depending

on the protocol used. Therefore, a speed constraint may limit the scalability of blockchain-based

applications. This issue is important when developing real-time and scalable blockchain-based

healthcare applications.

The third and last challenge is the threat of a 51% attack. This attack happens when there

are more malicious nodes than honest ones in the network, so the consensus is corrupted. This

issue is critical for healthcare applications that must be security demanding (Kuo et al., 2017).

3.4. Frameworks that support Blockchain development

In this chapter, some frameworks that support blockchain development will be presented

as well as a few key features of the latter that will be described and analyzed.

3.4.1. Hyperledger Fabric

According to (Cachin, 2016), Hyperledger Fabric is a distributed ledger platform for smart

contracts that uses well-known and well-proven technologies and has a modular architecture that

allows for pluggable implementations of different functions. It's one of several Hyperledger Project

projects currently in development.

Validating peers execute a replicated state machine that accepts three types of transactions

as operations using a Byzantine Fault Tolerance consensus protocol:

Management and Analysis Platform for Data Based in Blockchain Technology 22

− Deploy transaction: As a parameter, it accepts a chaincode (representing a smart

contract) written in Go; the chaincode is mounted on the peers and ready to use;

− Invoke transaction: Invokes a transaction of a specific chaincode that was previously

installed through a deploy transaction; The arguments are unique to the transaction

type; The chaincode executes the transaction, reads and writes entries in its state

as required, and reports whether it was successful or unsuccessful;

− Query transaction: Returns a state entry directly from reading the persistent state of

a peer; this may or may not guarantee linearizability.

The fabric includes a security framework for authentication and authorization since it

implements a permissioned ledger. Enrollment and transaction authorization are supported by

public-key certificates, and chaincode security is ensured by in-band encryption.

3.4.2. Hyperledger Composer

According to (Dahmen & Liermann, 2019), Hyperledger Composer is a software

development platform for creating business networks at a high level of abstraction. Using a simple

scripting language and a graphical user interface, smart contract logic and applications with

interfaces to other resources can be created.

The three main components of Hyperledger Composer are:

− The modeling language which is used to define the participants and the assets

− The transactions which interact with the participants and the assets

− The rights to access data and transactions.

Hyperledger Composer is a highly powerful platform for Proof of Concepts (PoCs) and

prototypes that make use of the Hyperledger Fabric API.

3.4.3. Hyperledger Convector

According to (Getting Started - Covalent Documentation, n.d.), the Convector Suite is an

Open Source Suite for Enterprise Blockchain Networks. It is composed of a group of Development

tools for Hyperledger Fabric and its main purpose is to be an agnostic toolset.

Management and Analysis Platform for Data Based in Blockchain Technology 23

Convector Suite main components are:

− Convector Smart Contracts - is a JavaScript-based Development Framework for

Enterprise Smart Contract Systems. By abstracting complexities, it aims to make

it easier for developers to develop, test, and deploy enterprise-grade smart contract

systems.

− Hurley - is the development environment toolset for blockchain projects. It supports

Hyperledger Fabric and is being ported to support other chain technologies.

As a rapid development platform for prototypes and proofs of concept, the Convector

system can take the place of Hyperledger Composer. Convector also has the advantage of

supporting more than just the Hyperledger Fabric platform (Dahmen & Liermann, 2019).

3.5. Tools for Blockchain Benchmarking

In this chapter, some tools for blockchain benchmarking will be presented as well as a few

key features.

3.5.1. Hyperledger Caliper

According to (Ampel et al., 2019), Hyperledger Caliper is a tool for measuring the efficiency

of permissioned blockchains. It helps users to compare and contrast various blockchains in similar

environments.

Caliper is capable of running benchmarks against various blockchain platforms. Caliper

was designed for extensibility, allowing it to work with today's most popular monitoring and

infrastructure solutions (Hyperledger Caliper Architecture, n.d.).

Throughput, latency, performance rate, and CPU / Memory resource utilization are all

metrics that the tool can monitor. This is accomplished by listening for transaction timestamps and

measuring metrics from them. Throughput is measured in transactions per second and indicates

how quickly transactions are effectively committed to the ledger. The interval between sending and

receiving transactions is calculated in seconds and is referred to as latency. The success rate is

the proportion of transactions that were successfully committed to the total number of transactions

sent. The target for this metric should be 100%. The minimum, maximum, and average utilization

Management and Analysis Platform for Data Based in Blockchain Technology 24

of those indicators can be found in CPU / Memory resource consumption. Memory is expressed

in megabytes and CPU is calculated as a percentage.(Ampel et al., 2019).

Caliper generates a report based on the SUT responses observed. The following diagram

(Fig. 9) depicts this oversimplified viewpoint. (Hyperledger Caliper Architecture, n.d.).

Figure 9 - Hyperledger Caliper Architecture, retrieved from (Hyperledger Caliper Architecture, n.d.)

3.5.2. Blockbench

According to (Wang et al., 2019), Blockbench is the first benchmark for examining and

comparing private blockchain results. Blockbench focuses on the private blockchain because the

efficiency of public blockchain has been extensively studied. The consensus layer, data model layer,

execution layer, and application layer are the four layers that the author abstracts from the

blockchain. Blockbench measures back-end device efficiency in four dimensions: throughput,

latency, scalability, and fault tolerance. The following image (Fig. 10) portrays Blockbench’s

architecture.

Management and Analysis Platform for Data Based in Blockchain Technology 25

Figure 10 - Architecture of Blockbench (Wang et al., 2019)

Five macro benchmark workloads such as(key-value storage, OLTP (Smallbank), EtherId,

Doubler, and WavesPresale and four micro benchmark workloads such as DoNothing, Analytics,

IOHeavy, and CPUHeavy have been developed by Blockbench (Wang et al., 2019).

3.5.3. Prometheus

According to (Prometheus, 2019), SoundCloud created Prometheus, an open-source

device monitoring and alerting toolkit. Many businesses and organizations have embraced

Prometheus since its launch in 2012, and the project has a thriving developer and user community.

It is now a self-contained open-source project that is run without the involvement of any

organization.

Prometheus has a query language and a basic but powerful data model that allows you to

analyze how your applications and infrastructure are performing (Brazil, 2018).

The following are the major characteristics of Prometheus (Prometheus, 2019):

− A multi-dimensional data model with time series data identified by metric name and

key/value pairs

− PromQL, a flexible query language to leverage this dimensionality

− No need for distributed storage; single server nodes are self-contained

− Time series data is collected using a pull model over HTTP.

− An intermediate gateway is used to push time series.

− Service discovery or static configuration are used to find targets.

− Support for various graphing and dashboarding modes

Management and Analysis Platform for Data Based in Blockchain Technology 26

Multiple components make up the Prometheus ecosystem, many of which are optional:

− Prometheus' main server, which scrapes and saves time-series data

− Application code instrumentation client libraries

− A push gateway for supporting short-lived jobs

− Exporters specialized in services like HAProxy, StatsD, Graphite, etc.

− An alert manager to handle alerts

− Multiple support tools

For short-lived jobs, Prometheus scrapes metrics from instrumented jobs, either directly

or through an intermediary push gateway. It saves all scraped samples locally and applies rules to

them in order to aggregate and record new time series from existing data or to generate alerts. The

collected data can be visualized using Grafana or other API users. Prometheus is an excellent tool

for capturing strictly numerical time series. It can be used for both machine-centric and highly

complex service-oriented design monitoring. Its support for multi-dimensional data collection and

querying is a specific strength in the world of microservices. Prometheus is designed for reliability.

Each Prometheus server is self-contained, meaning it is not reliant on network storage or other

third-party services. When other parts of your infrastructure fail, you can depend on it, and you

don't need to set up a lot of infrastructures to use it (Prometheus, 2019).

Prometheus is a quick and easy-to-use system. Millions of samples per second can be

ingested by a single Prometheus server. It is a single binary that is statically connected and has a

configuration file. Prometheus' components can all be run in containers, and they don't do anything

fancy that would obstruct configuration management software. It's made to fit with the already

existing infrastructure. It is not intended to be a management tool in and of itself, but rather to be

incorporated into and developed on top of the existing infrastructure (Brazil, 2018).

Management and Analysis Platform for Data Based in Blockchain Technology 27

The following image (Fig. 11) describes Prometheus’ Architecture (Prometheus, 2019):

Figure 11 - Prometheus Architecture (Prometheus, 2019)

4. Research Methodologies

This chapter describes the methodology used as a fundamental part of this work. The

methodology in question is Design Science Research (DSR).

4.1. Design Science Research

To elaborate on this dissertation, Design Science Research in the domain of Information

Systems will be used. According to (Hevner & Chatterjee, 2010) Design Science Research is the

systematic paradigm in which a designer uses innovative artifacts to address questions about

human challenges, thus adding new insight to the body of scientific evidence. The crafted objects

are both helpful and essential to comprehending the issue.

According to (Peffers et al., 2008) the Design Science Research methodology incorporates

six activities in a nominal sequence. The activities are the following:

Management and Analysis Platform for Data Based in Blockchain Technology 28

1. Problem identification and motivation: This practice entails defining the research

problem as well as justifying the solution value. The problem description will be used

to create an artifact, which will then be used to provide a viable solution. It can also

be useful for breaking down the problem into basic concepts, allowing the solution to

capture its complexity. Justifying the worth of a solution not only encourages the

researcher and audience to follow it and consider the findings, but it also aids in

understanding the logic behind the researcher's understanding of the issue.

In this project, the main problem is that, in Healthcare, there is no secure way of sharing

and storing data. Data can be modified and deleted, simply by having administrator permissions.

Furthermore, there is no historical log of data currently that satisfies the requirements previously

stated. Blockchain technology is based on the immutability and reliability of data and the historical

timeline of data storage, therefore it is a viable solution for this problem.

2. Define the objectives for a solution: The goals of a solution are rationally inferred

from the problem description and awareness of what is practicable and feasible in this

operation. The goals can be quantitative or qualitative. Awareness of the current state

of problems, as well as current solutions and their effectiveness, are necessary

resources.

The main objective is assuring a secure way for data to be shared among agencies as well

as data’s immutability, reliability, and historical timeline.

3. Design and development: The artifact's development is the focus of this activity. A

design research artifact is any built object that incorporates a research input into the

design. This practice entails deciding the desired functionality and architecture of the

artifact. Knowledge of theory that can be applied in a solution is one of the tools needed

for moving from goals to design and production.

Regarding this project, firstly, there is the need to research to obtain more knowledge about

the process of developing a blockchain-based platform and the tools and frameworks necessary

for it.

Management and Analysis Platform for Data Based in Blockchain Technology 29

4. Demonstration: The use of the artifact to solve one or more instances of the problem

is demonstrated in this operation. This may include practices such as simulation,

experimentation, case study, evidence, and others. The successful knowledge of how

to use the artifact to solve the problem is one of the necessary tools.

In this project, after the platform is developed, tests and benchmarks will be conducted to

assure that the platform satisfies the problems’ objectives.

5. Evaluation: This practice entails observing and calculating how well the artifact

supports a problem solution. It entails matching a solution's goals to actual observed

outcomes from the demonstration's use of the artifact. It necessitates an

understanding of applicable metrics and measurement methods. In other words, it can

be shown if the goals were met in this operation.

In this project, after the platform is developed, there will be a comparison between the

objectives previously inferred and the quality of the artifact, to analyze whether the objectives were

met.

6. Communication: This practice entails informing researchers and other interested

parties about the issue and its significance, as well as the artifact and its usefulness,

nature, and effectiveness. In a nutshell, this operation entails the exchange of problem

and artifact information.

Regarding this project, in the final phase, a presentation will be conducted about the artifact

developed. The presentation will include the obtained knowledge, provided by the research itself

and the developed artifact.

Management and Analysis Platform for Data Based in Blockchain Technology 30

The following diagram (Fig. 12) shows the six activities that compose this methodology.

Figure 12 - Design Science Research diagram (Peffers et al., 2008)

According to (Peffers et al., 2008), although the process is structured in sequential order,

there is no need to follow a determined order.

5. Project Development

This chapter describes the project development process as well as all the technologies and

tools used to create a functional prototype.

This project consists of the development of a private blockchain structure to support

medical data gathering. Patients have beacons in their rooms that interact with an app that runs

on medical staff’s tablets. This app communicates with the blockchain through a REST API that

provides various functions for asset creation in the blockchain.

5.1. Tools and Frameworks used

This chapter comprehends all the Tools and Frameworks used for the development of the

project as well as a brief description of the context of usage of said Tools and Frameworks.

Management and Analysis Platform for Data Based in Blockchain Technology 31

5.1.1. Hypeledger Fabric

Hyperledger Fabric is designed to serve as a platform for building modular applications

and solutions. Plug-and-play modules, such as consensus and membership services, are possible

with Hyperledger Fabric. Its modular and adaptable architecture caters to a wide variety of industry

applications. It takes a novel approach to consensus that allows for scalability while maintaining

privacy (The Linux Foundation, 2020c).

Hyperledger Fabric was chosen as the blockchain framework for this project as it is an

open-source project which offers all the necessary tools to deploy a private blockchain.

5.1.2. Hyperledger Caliper

Hyperledger Caliper is a blockchain benchmarking tool that allows users to assess a

blockchain implementation's success against a collection of predefined use cases. Hyperledger

Caliper can generate reports with a variety of performance metrics (The Linux Foundation, 2020a).

Hyperledger Caliper was the chosen benchmarking tool for blockchain since it offers

powerful metrics, it’s easy to set up, and is developed by Hyperledger, which makes integration

with Hyperledger Fabric easy and seamless.

5.1.3. Prometheus and Grafana

Prometheus is an open-source system monitoring and alerting toolkit (Prometheus, 2019).

In this project, Prometheus was used to benchmark the computational load such as the

CPU and Memory usage of every component of the blockchain. Prometheus retrieved metrics for

every docker container while Grafana provided Graphs and Dashboards for these metrics.

5.1.4. Blockchain Explorer

Blockchain Explorer is a user-friendly Web application platform for viewing, invoking,

deploying, and querying blocks, transactions, and related data, network information (name, status,

list of nodes), chain codes and transaction families, and any other applicable data stored in the

ledger (The Linux Foundation, 2020b).

Management and Analysis Platform for Data Based in Blockchain Technology 32

In this project, it was used to better visualize the blockchain. In the app, you can query

blocks and transactions as well as see the network peers and orderers, the chaincodes installed

and their respective versions, and the channels available.

5.1.5. Visual Studio Code

Visual Studio Code is a reimagined and streamlined code editor for developing and

debugging modern web and cloud applications (Microsoft, 2020).

In this project, it was used to edit Hyperledger Fabric files such as javascript files, config

files, yaml files, go files, etc. Moreover, it served to better visualize the folder and project structure,

keeping the developing environment more organized and therefore, easier to navigate. This editor

was chosen for its simplicity, lightweight, and modern interface.

5.1.6. Go Language

Go is an open-source programming language that makes it simple to create software that

is reliable and powerful (Meyerson, 2014).

The Go language was used to create the smart contracts that integrate Hyperledger Fabric.

All the functions of asset query and asset creation were coded in go as well as the asset structs.

5.1.7. NodeJS

Node.js is a scalable network application builder that uses an asynchronous event-driven

JavaScript runtime. Many connections can be managed at the same time (OpenJS Foundation,

2020).

NodeJS was chosen as a language for the development of the Rest API because it offers

fast development, easy deployment, and consistent network capabilities.

5.1.8. Postman

According to (Postman Inc., 2021), Postman is an API development collaboration tool.

Postman's features make each stage of creating an API easier to understand and collaborate on,

allowing you to develop better APIs faster.

Management and Analysis Platform for Data Based in Blockchain Technology 33

In this project, Postman was used to better organize the API functions as well as facilitate

the development of the API. It creates a savable environment in which functions, URLs, request

bodies, params, and authentication tokens are saved. With this in mind, Postman was used to

creating a collection specific to the project API.

5.2. Prerequisites

This chapter contains all the software required to develop this project as well as the

instructions required to install it correctly. In some cases, to run Hyperledger Fabric specific

versions of the software are required. Some ways of verifying if every tool is installed correctly are

also provided in this chapter.

To develop this project the following tools were installed:

− Operating System: Linux Ubuntu 20.04 LTS 64-bit

− cURL tool: Latest version (used version 7.68.0)

− git (used version 2.25.1)

− Docker engine: latest version (used version Docker 20.10.5, build 55c4c88)

− Docker Compose: lastest version (used version docker-compose 1.25.0)

− Node: latest version (used version v10.19.0)

− npm: Version 8.9 or higher, version 9 to 10.15.2 are not supported (used version

6.14.4)

− Python: version 2.7.x (used version Python 2.7.18)

− Go: Version 1.13.x (used version go 1.13.8)

− Vim (used version 8.1.2269)

− Visual Studio Code (used version 1.54.3)

− Postman (used version 7.36.5)

Firstly, curl and golang software package were installed. For this, the following commands

were executed in the terminal:

− sudo apt-get install curl

− sudo apt-get install golang

Management and Analysis Platform for Data Based in Blockchain Technology 34

− export GOPATH=$HOME/go

− export PATH=$PATH:$GOPATH/bin

− sudo apt-get install vim

− sudo snap install postman

− sudo snap install --classic code

To be able to call golang in a terminal anywhere in the operating system, the path must

be added to the bashrc file. The path of the local golang installation was provided by editing the

bashrc file with a text editor of choice. In this case, “vim” was used as the text editor.

The following command was used to edit the bashrc:

− vim ~/.bashrc

The following lines of code were added to the bashrc file:

− export PATH=$PATH:/usr/local/go/bin:/home/hugo/.go/bin

− export GOPATH=/home/hugo/go

− export GOROOT=/usr/local/go

− export PATH=$PATH:$GOPATH/bin

After editing and saving the bashrc file, the following command was executed in order to

update the environment so that the changes made in the bashrc file are reflected on the current

shell:

− source ~/.bashrc

This prevents having to reopen the shell.

After sourcing the bashrc file, NodeJS, npm and Python were installed.

To accomplish this, the following commands were executed:

− sudo apt-get install nodejs

− sudo apt-get install npm

− sudo apt-get install python

After installing the previously mentioned software, golang was installed manually to use

the 1.13.x version. The go compressed files were downloaded, extracted and moved to the

/usr/local folder. To perform this task the following commands were executed by sequential order:

− wget https://dl.google.com/go/go1.13.x.linux-amd64.tar.gz\

https://dl.google.com/go/go1.13.x.linux-amd64.tar.gz/

Management and Analysis Platform for Data Based in Blockchain Technology 35

− tar -xzvf go1.13.x.linux-amd64.tar.gz

− sudo mv go/ /usr/local

− export GOPATH=/usr/local/go

− export PATH=$PATH:$GOPATH/bin

After successfully installing the previously mentioned software, both docker and docker-

compose were installed. To perform this task, the following commands were executed by sequential

order in the terminal:

− curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add –

− sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu

− $(lsb_release -cs) stable"

− sudo apt-get update

− apt-cache policy docker-ce

− apt-get install -y docker-ce

− sudo apt-get install docker-compose

− sudo apt-get upgrade

After docker is installed successfully, to enable the docker service on boot the following

command was executed:

− sudo systemctl enable docker.service

Finally, to start the docker service the following command was executed:

− sudo systemctl start docker

After having installed docker successfully, the following commands were executed to verify

that the software versions installed are the correct ones:

− curl -V

− npm -v

− docker version

− docker-compose version

− go version

https://download.docker.com/linux/ubuntu/gpg
https://download.docker.com/linux/ubuntu

Management and Analysis Platform for Data Based in Blockchain Technology 36

− python -V

− node -v

After verifying that all the previous software was installed correctly and that the versions

installed were correct, samples, binaries, and docker images were installed. These binaries have

different purposes that are crucial for the successful development of the project. The following list

comprehends the various binaries and their respective purposes:

− Configtxgen – Creating network artifacts(genesis.block/channel.tx)

− Configtxlator – Utility for generating channel configuration

− Cryptogen – Utility for creating key material

− Discovery – Command-line client for service discovery

− Idemixgen – Utility for generating key material to be used with identity mixer MSP

− Orderer – node

− Peer – node

− Fabric-ca-client – Client for creating, registering, and enrolling users

The following commands were used to create a folder and download the samples, binaries,

and docker images:

− mkdir testfolder

− cd testfolder

− curl -sSL https://bit.ly/2ysbOFE | bash -s

− curl sSL https://bit.ly/2ysbOFE | bash -s - fabric_version fabric-ca_version thirdparty_version

− curl sSL https://bit.ly/2ysbOFE | bash -s - 2.0.1 1.4.6 0.4.18

A fabric-samples folder was downloaded in the process. In this folder, there’s a subfolder

called bin. This folder contains all the fabric binaries necessary for this project. These binaries must

be accessible systemwide. For that, the bin folder path was added to the bashrc file. To edit the

bashrc the following command was used:

− vim ~/.bashrc

The following line of code was added to the bashrc:

Management and Analysis Platform for Data Based in Blockchain Technology 37

− export PATH=$PATH:/home/hugo/testfolder/fabric-samples/bin

Once again the source command was used to update the environment, so the changes

made are reflected on the current shell:

− source ~/.bashrc

To test if everything was set up correctly the command “peer” was executed in the

terminal. If everything is set up correctly, the peer command is recognized by the operating system

and the following output (Fig. 13) is obtained:

Figure 13 - Peer command execution in order to validate the installation

6. Results and Discussion

This chapter comprehends all the results obtained throughout the project as well as all the

details that embody the development of the solution.

6.1. Network Structure

The network proposed was created with the following elements:

− 2 Organizations (Org1 and Org2)

− 2 Peers per Organization (Peer1.Org1, Peer2.Org1, Peer1.Org2, Peer1.Org)

− 3 Orderers (Orderer 1, Orderer 2 and Orderer 3)

− 1 Channel (mychannel)

Management and Analysis Platform for Data Based in Blockchain Technology 38

− 1 Chaincode (tracking)

The following image (Fig. 14) provides a better understanding of the blockchain network

architecture created for this project.

Figure 14 - Blockchain Network Architecture

By observing the previous image (Fig. 14) it can be inferred that the REST API handles the

communication between the Client and the blockchain network.

6.2. Hyperledger Fabric

To develop the Hyperledger Fabric part of the project a GitHub repository was downloaded

using the following command (Pavan, n.d.-a):

− git clone https://github.com/adhavpavan/BasicNetwork-2.0.git

After cloning the repository, in the folder “BasicNetwork-2.0/artifacts/channel” a script

named create-artifacts.sh was executed in order to genereate the crypto-config which contains all

https://github.com/adhavpavan/BasicNetwork-2.0.git

Management and Analysis Platform for Data Based in Blockchain Technology 39

the certificates and private keys necessary for the blockchain network. To do this task the following

command was used:

− ./create-artifacts.sh

The crypto-config.yaml file contains the configurations relative to the crypto-config genesis.

Depending on the confugration used in this file, private keys and certificiates will be generated

accordingly. For this project the configuration for the crypto-config genesis used contains three

orderers and two organizations with two peers each.

The file configtx.yaml contains configurations such as the anchor peer definition for each

organization.

The docker-compose-yaml file contains the services definition. This is where all the peers,

organizations, oderers and databases are defined and their respective external IP’s are defined and

mapped to the internal docker container IP.

To start the network the following command was used inside “BasicNetwork-

2.0/artifacts/” folder:

− docker-compose up -d

To verify that every container defined in the docker-compose.yaml is running, the following

command was used:

− docker ps

The next step consists in creating a channel and joining all the peers to it. For this task,

there is a script called “createChannel.sh”. The path for the crypto-config peer mspconfig, peer tls

rootcert file, orderer CA, and organizations CA must be provided as well as the channel name and

the path of the fabric config file. In this project, this file is located in “BasicNetwork-

2.0/artifacts/channel/config “. The channel name used in this project is mychannel.

In order to accomplish this task, the previously mentioned script must be executed three

times. Firstly, comment the joinChannel and updateAnchorPeers functions so that the script only

executes the createChannel function. Execute the script using the following command:

− ./createChannel.sh

Management and Analysis Platform for Data Based in Blockchain Technology 40

After executing the script, comment the createChannel function and uncomment the

joinChannel function and execute the script. Finally, after executing the script for the second time,

comment the joinChannel function and uncomment the updateAnchorPeers function and execute

the script for the last time.

To verify that the channel was created successfully and that the peers joined the created

channel, we can go inside the docker container of a certain peer and check its channel list. To

perform such a task the following commands were used:

− docker exec -it peer0.org1.example.com sh

− peer channel list

The first command is used in order to join the docker container of the peer. Note that

peer0.org1.example.com is the name of the container used in this project for Peer 0 of Organization

1. The second command should output the name of the previously created channel if everything

was set up correctly.

The next step consists in deploying the chaincode. To perform this task, the following script

was executed:

− ./deployChaincode.sh

This script follows the fabric 2.0 Chaincode Lifecycle. This Lifecycle is represented in Fig.

15.

Management and Analysis Platform for Data Based in Blockchain Technology 41

Figure 15 - Chaincode Lifecycle

The script will execute the following functions sequentially, respecting the Chaincode

Lifecycle:

− packageChaincode

− installChaincode

− queryInstalled

− approveForMyOrg1

− checkCommitReadyness

− approveForMyOrg2

− checkCommitReadyness

Management and Analysis Platform for Data Based in Blockchain Technology 42

− commitChaincodeDefination

− queryCommitted

− chaincodeInvokeInit

− chaincodeInvoke

− chaincodeQuery

In between some of the functions, there are sleep functions so the system waits some time

before executing the next function. This is needed because instantiating the chaincode might take

some time and having a delay prevents the next function execution before the first function finishes

its execution.

The same paths used to create the channel are used to deploy the chaincode, so the

environmental variables used in this step are the same. The name and path to the smart contract

must be specified in the script.

The following list contains the definitions used:

− CHANNEL_NAME="mychannel"

− CC_RUNTIME_LANGUAGE="golang"

− VERSION="1"

− CC_SRC_PATH="./artifacts/src/github.com/tracking/go"

− CC_NAME="tracking"

To create the Smart Contract, the fabcar example was copied and modified to

accommodate the tracking structure.

The Smart Contract follows the structure represented in the following table diagram (Table

2).

Table 2 - API structure table diagram

Management and Analysis Platform for Data Based in Blockchain Technology 43

The V prefix stands for Variable and marks the properties that need to have the ability to

be changed which translates into a new state for the asset. Both the beacon and patient can be

physically moved. For instance, the patient can be moved to another room for a different treatment

and so does the beacon. The Medical Device can be associated with a different doctor in case of

multiple doctors using the same device. The room can also change and so does the patient being

tracked.

For the implementation, a private Hyperledger Fabric blockchain was employed in a Linux

Ubuntu virtual machine. A smart contract was created to define the data structures and functions

necessary for the prototype. For instance, a struct named DispositivoMedico was created in the

smart contract in order to define the medical device data structure that will be stored in the tracking

process. In the same line of thought, a function named createDispMedico was developed for the

creation of the medical device asset as well as its insertion in the blockchain. Various functions for

asset creation and asset state change were developed for this prototype. As presented in Table 3,

each function as well as its name and purpose was specified.

Table 3 - Functions for asset creation and asset state change

This type of structure allows asset creation and asset state updates as well as viewing the

asset state history which helps in the tracking process. For instance, you can check which rooms

a given patient has been in, or which doctors had access to a certain medical device and which

patient they were treating at a certain time.

Name Function Purpose

Create Beacon createBeacon Create a Beacon

Create Doctor createMedico Create a Doctor

Create Medical Device createDispMedico Create a Medical Device

Create Patient createDoente Create a Patient

Change Beacon Room changeBeaconSala Change the Room of a Beacon

Change Patient Room changeDoenteSala Change the Room of a Pacient

Change Medical Device Doctor changeDispMedMedico Change the Doctor of a Medical Device

Change Medical Device Room changeDispMedSala Change the Room of a Medical Device

Change Medical Device Patient changeDispMedDoente Change the Patient of a Medical

Device

Get History Of Asset getHistoryForAsset Get the state history of a certain asset

Management and Analysis Platform for Data Based in Blockchain Technology 44

Fig 16 represents the structs created in the Smart Contract:

Figure 16 - Smart Contract structs

Fig 17 represents the Smart Contract function that creates the Dispositivo Medico asset:

Figure 17 - Smart Contract function createDispMedico

Management and Analysis Platform for Data Based in Blockchain Technology 45

Fig 18 represents the Smart Contract function that changes the Doente of the Dispositivo Medico.

Figure 18 - Smart Contract function changeDispMedDoente

Management and Analysis Platform for Data Based in Blockchain Technology 46

Fig 19 represents the Smart Contract function that queries the blockchain and returns the

state history of an asset:

Figure 19 - Smart Contract function getHistoryForAsset

Every function created in the Smart Contract must be added to the Smart Contract Invoke

method. The following image (Fig. 20) represents this method:

Management and Analysis Platform for Data Based in Blockchain Technology 47

Figure 20 - Smart Contract Invoke method

Throughout the development phase of this project, there was a need to constantly modify

and update the chaincode. To perform this task the following script was executed:

− ./upgradeChaincode.sh

This script is responsible for upgrading and installing the new chaincode. It is very similar

to the script used for chaincode deployment as it uses the same definitions and variables. In order

to update the chaincode, increment the version number and execute the script. Note that it is

important to provide a different version number from the ones already installed in the network,

otherwise the execution will fail with an error.

Management and Analysis Platform for Data Based in Blockchain Technology 48

6.3. REST API

This chapter contains the developed API architecture, all the functions created, and their

respective behavior. Some images that represent how each function works will be provided as well

as database images that confirm that assets were created or changed.

6.3.1. API Architecture

In the folder “BasicNetwork-2.0/api-1.4/artifacts” there is a file called network-

config.yaml. This file contains the network configurations that follow the network structure of the

project. The path of the crypto-config private keys and certificates of the Organizations, Peers,

Orderers, and Certificate Authorities are specified in this file.

A postman collection was created for this API. This collection contains all the functions

developed for the API which directly correlate to the previously created functions in the smart

contract. The following table (Table 4) illustrates the postman collection created, mentioning each

function created and its request type.

Table 4 - API requests

Request Type Function

POST Register User

POST Create Beacon

POST Create Dispositivo Medico

POST Create Medico

POST Create Doente

POST Change Beacon Sala

POST Change Dispositivo Medico Medico

POST Change Dispositivo Medico Sala

POST Change Dispositivo Medico Doente

POST Change Doente Sala

GET Get History Of Asset

As it can be inferred from Table 3, eleven functions were created, one of which is a GET

request and the rest are POST requests.

The REST API was made with a generical approach so that the Smart Contract logic can

be changed without the need to change the API. This results in the need to provide the API with

Management and Analysis Platform for Data Based in Blockchain Technology 49

certain parameters on each API call. The parameters are sent in the request body in jSON format

and have the following structure:

− {
 "fcn": "function_name",
 "peers": ["peer_name_1", "peer_name_2", ...],
 "chaincodeName": "chaincode_name",
 "channelName": "channel_name",
 "args": ["arg0", "arg1", ...]
}

The URL for the requests has the following structure:

− http://localhost:400/channels/{channel_name}/chaincodes/{chaincode_name}

The {channel_name} and the {chaincode_name} must be replaced to the correspondent

project channel and chaincode in use. For this project the channel used is called mychannel and

the chaincode used is called tracking.

This structure allows the API to support various channels and chaincodes independently.

Before running the API, the node modules must be installed first. To accomplish this task

in the folder “BasicNetwork-2.0/api-1.4” the following command was run:

− npm install

After the node modules were installed successfully, the API was started using the following

command:

− node app.js

For this project, the API runs in the http://localhost:4000 domain.

6.3.2. Register User and Authentication Token

Every API call needs to be authenticated with a bearer token. This token is obtained upon

user registration. To register a user, both username and organization name must be provided in

the request body. The URL used for the request is http://localhost:4000/users.

The following image (Fig. 21) shows the process of registering a user:

http://localhost:4000/
http://localhost:4000/users

Management and Analysis Platform for Data Based in Blockchain Technology 50

Figure 21 - Create a User

As can be inferred from the figure above, the response body returns the API request

success status and the Bearer Token that will be used for all future API calls.

As all API calls need an authentication token, the token must be provided for every function.

The following image (Fig. 22) shows how to accomplish such a task.

Figure 22 - Bearer Token being defined in the Create Beacon function

Management and Analysis Platform for Data Based in Blockchain Technology 51

6.3.3. Create Beacon (createBeacon)

The function createBeacon was developed to register a beacon in the blockchain network,

as the project raises a necessity to associate a beacon with a room. This function takes the following

arguments for the creation of the beacon asset:

− Arg1: Beacon ID (id)

− Arg2: Room (sala)

The following image (Fig. 23) shows a POST request made to the API with the function

createBeacon:

Figure 23 - createBeacon function API call

As it can be inferred from the image above, if the POST request is successful, a Transaction

ID will be received in the response body under the name tx_id. If the request is unsuccessful an

error message is displayed. This type of behavior was implemented in all the functions created.

Management and Analysis Platform for Data Based in Blockchain Technology 52

6.3.4. Create Doctor (createMedico)

The function createMedico was developed to register a Doctor in the blockchain. This

function takes the following arguments:

− Arg1: Doctor ID (id)

− Arg2: Doctor Name (nome)

The following image (Fig. 24) shows a POST request made to the API with the function

createMedico:

Figure 24 - createMedico function API call

The following image (Fig. 25) represents the recently created asset in the database.

Management and Analysis Platform for Data Based in Blockchain Technology 53

Figure 25 - Medico_08 asset in the database

6.3.5. Create Patient (createDoente)

The function createDoente was developed to register a patient in the blockchain. The

project raised a necessity to associate patients with a certain room. This function takes the following

arguments:

− Arg1: Patient ID (id)

− Arg2: Room (sala)

The following image (Fig. 26) shows a POST request made to the API with the function

createDoente:

Figure 26 - createDoente function API call

Management and Analysis Platform for Data Based in Blockchain Technology 54

6.3.6. Create Medical Device (createDispMedico)

As the project raised a necessity to register medical devices in the ledger, the function

createDispMedico was developed. This function takes five arguments:

− Dispositive ID (id)

− Dispositive Name (nome)

− Doctor (medico)

− Room (sala)

− Patient (doente)

The following image (Fig. 27) shows a POST request made to the API with the function

createDispMedico:

Figure 27 - createDispMedico function API call

Management and Analysis Platform for Data Based in Blockchain Technology 55

6.3.7. Change Beacon room property (changeBeaconSala)

As previously stated some asset arguments present a need to be changed.

The changeBeaconSala function allows changing the room (sala) property of any stored

Beacon asset in the blockchain network. This function takes the two following arguments:

− Arg1: Beacon ID (id)

− Arg2: Room (sala)

The first argument is used to identify the asset and the second argument is the property

that will be changed.

The following image (Fig. 28) shows a POST request made to the API with the function

changeBeaconSala:

Figure 28 - changeBeaconSala function API call

The following image (Fig .29) represents the recently changed asset in the database:

Management and Analysis Platform for Data Based in Blockchain Technology 56

Figure 29 - Beacon_10 asset in the database

6.3.8. Change Patient room property (changeDoenteSala)

The changeDoenteSala function allows changing the room (sala) property of any stored

Patient (Doente) asset in the blockchain network. This function takes the two following arguments:

− Arg1: Patient ID (id)

− Arg2: Room (sala)

The first argument is used to identify the asset and the second argument is the property

that will be changed.

The following image (Fig. 30) shows a POST request made to the API with the function

changeDoenteSala:

Management and Analysis Platform for Data Based in Blockchain Technology 57

Figure 30 - changeDoenteSala function API call

The following image (Fig. 31) represents the recently changed asset in the database.

Figure 31 - Doente_11 asset in the database

6.3.9. Change Medical Device room property(changeDispMedSala)

The changeDispMedSala function allows changing the room (sala) property of any stored

Medical Device (Dispositivo Médico) asset in the blockchain network. This function takes the two

following arguments:

Management and Analysis Platform for Data Based in Blockchain Technology 58

− Arg1: Medical Device ID (id)

− Arg2: Room (sala)

The first argument is used to identify the asset and the second argument is the property

that will be changed.

The following image (Fig. 32) shows a POST request made to the API with the function

changeDispMedSala:

Figure 32 - changeDispMedSala function API call

6.3.10. Change Medical Device doctor property

(changeDispMedMedico)

The changeDispMedMedico function allows changing the doctor (medico) property of any

stored Medical Device (Dispositivo Médico) asset in the blockchain network. This function takes the

two following arguments:

− Arg1: Medical Device ID (id)

− Arg2: Doctor ID (Medico ID)

Management and Analysis Platform for Data Based in Blockchain Technology 59

The first argument is used to identify the asset and the second argument is the property

that will be changed.

The following image (Fig. 33) shows a POST request made to the API with the function

changeDispMedMedico:

Figure 33 - changeDispMedMedico function API call

6.3.11. Change Medical Device patient property

(changeDispMedDoente)

The changeDispMedDoente function allows changing the patient (doente) property of any

stored Medical Device (Dispositivo Médico) asset in the blockchain network. This function takes the

two following arguments:

− Arg1: Medical Device ID (id)

− Arg2: Patient ID (Doente ID)

The first argument is used to identify the asset and the second argument is the property

that will be changed.

The following image (Fig. 34) shows a POST request made to the API with the function

changeDispMedDoente.

Management and Analysis Platform for Data Based in Blockchain Technology 60

Figure 34 - changeDispMedDoente function API call

The following image (Fig. 35) represents the recently changed asset in the database.

Figure 35 - Dispositivo_07 asset in the database

6.3.12. Get History of Asset (getHistoryForAsset)

As many assets are changed over time, there is a need to retrieve the information history

of an asset. This function was created to satisfy those needs. The function returns the asset state

over time as well as a timestamp and transaction id.

Management and Analysis Platform for Data Based in Blockchain Technology 61

The function takes the following argument:

− Arg1: Asset ID (id)

The following image (Fig. 36) shows a GET request made to the API with the function

getHistoryForAsset for the Dispositivo_07 asset:

Figure 36 - getHistoryForAsset function API call

The following image (Fig. 37) shows a more detailed view of the response body, as well as

the asset state status over time:

Management and Analysis Platform for Data Based in Blockchain Technology 62

Figure 37 - Detailed view of the getHistoryForAsset response body for the Dispositivo_07 asset

The asset history is sorted in inverse chronological order, in other words, from the most

recent asset state to the oldest asset state.

The asset state is accompanied by a Transaction ID which points to the transaction

responsible for the asset state change and a Timestamp in which the transaction occurred

By chronological the Dispositivo_07 changed the medico property from “Medico_01” to

“Medico_08”. Then, the sala property changed from “Sala 1” to “Sala 30”. Finally, the doente

property changed from “Doente_01” to ”Doente_10”.

Management and Analysis Platform for Data Based in Blockchain Technology 63

All of the described changes were used as an example in the previous chapters so this

chapter confirms the results obtained on the previous chapters.

6.4. Blockchain Explorer

To develop the Blockchain Explorer part of the project a GitHub repository was downloaded

using the following command (Pavan, n.d.-b):

− git clone https://github.com/adhavpavan/ContainerisingBlockchainExplorer.git

After cloning the repository, the crypto-config folder previously created in chapter 6.2 was

copied to the ContainerisingBlockchainExplorer folder.

Inside the connection-profile folder there are two files:

− first-network.json

− first-network_2.2.json

For this project, the file first-network_2.2.json was used. In this folder, the correct paths to

the previously copied crypto config certificates and private keys were provided. The correct paths

to these files must be provided otherwise blockchain explorer initialization will fail with a wallet

creation error. This file also contains the login credentials necessary for logging into Blockchain

Explorer. These credentials can be changed in this file as well.

Under the main folder, in the config.json file, the path to the first-network_2.2.json was

provided. The .env file contains the compose project name which, in this case, needs to be the

same as the one used to set up the Hyperledger Fabric blockchain. In this case, the compose

project name used is “artifacts”.

In the docker-compose.yaml file, many configurations influence the docker container

behavior. Initially, nothing in this file was changed, but after chapter 6.6 there was a need to change

the container ports because the 8080 port was already being used by cadvisor which is a

Prometheus component. The port was changed to port 8000. Since the first port refers to the local

machine and the second port points to the port used inside the container, only the first port was

changed.

After everything is set up correctly, the following command was used inside the

“/home/hugo/repo/ContainerisingBlockchainExplorer” folder to initialize the container:

https://github.com/adhavpavan/ContainerisingBlockchainExplorer.git

Management and Analysis Platform for Data Based in Blockchain Technology 64

− docker-compose up -d

When the command finishes executing Blockchain Explorer must be running and a login

screen will be prompted to the user (Fig. 38).

Figure 38 - Blockchain Explorer Login screen

After logging in, a dashboard about the blockchain is presented with many metrics that

give a better overall view of the blockchain (Fig. 39).

Management and Analysis Platform for Data Based in Blockchain Technology 65

Figure 39 - Blockchain Explorer Dashboard

The dashboard provides the visualization of the peers available in the blockchain, the most

recent blocks added, the transactions made by the organization, and the block throughput. Note

that in the image above the maximum time scale is one hour, and the image was taken more than

one hour after the transactions were made. This is why it shows that there are 0 blocks/hour.

On the top of the page, the tabs allow for a more detailed view of transactions, blocks,

network participants, chaincodes and channels.

The following images (Fig. 40 to Fig 44) show examples of the level of detail of transactions,

blocks, participants, channels, and chaincodes that Blockchain Explorer provides:

Management and Analysis Platform for Data Based in Blockchain Technology 66

Figure 40 - Blockchain Explorer Transaction details

Figure 41 - Blockchain Explorer Block details

Figure 42 - Blockchain Explorer Chaincode details

Figure 43 - Blockchain Explorer channels

Management and Analysis Platform for Data Based in Blockchain Technology 67

Figure 44 - Blockchain Explorer network participants

6.5. Hyperledger Caliper

To develop the Hyperledger Caliper part of the project a GitHub repository was downloaded

using the following command (Pavan, n.d.-c):

− git clone https://github.com/adhavpavan/ContainerisingCaliperForFabricBenchmark.git

After cloning the repository, the crypto-config folder previously created in chapter 6.2

available in the path “/BasicNetwork-2.0/artifacts/channel/crypto-config” was copied to the

following path:

− “ContainerisingCaliperForFabricBenchmark/caliper-benchmarks-

local/networks/fabric/pavan-v2.1/”

Inside the folder to which the crypto-config was copied, there is a file called network-

config_2.2.yaml. In this file, the path indicated should match with the certificates and private keys

stored in the recently copied crypto-config folder.

The smart contract folder containing the tracking.go file previously created in chapter 6.2

was also copied to the “ContainerisingCaliperForFabricBenchmark” folder in the following path:

https://github.com/adhavpavan/ContainerisingCaliperForFabricBenchmark.git

Management and Analysis Platform for Data Based in Blockchain Technology 68

− “ContainerisingCaliperForFabricBenchmark/caliper-benchmarks-

local/src/fabric/samples/fabcar/go”

To test the functions created in the smart contract, one test function was created per

function in the smart contract in the following path:

− “/ContainerisingCaliperForFabricBenchmark/caliper-benchmarks-

local/benchmarks/scenario/simple/pavan-v2.2”

These functions are organized in separate javascript files and each function is responsible

for generating random assets that Caliper uses to insert into the blockchain in order to benchmark

the network.

The following image (Fig. 45) shows one of the functions created:

Figure 45 - Hyperledger Caliper CreateDispMedico function for random asset generation

Management and Analysis Platform for Data Based in Blockchain Technology 69

After creating the functions, the config.yaml file was edited to implement the recently

created functions. In this file, the following parameters were specified:

− label: Name of the function that will appear in the report;

− txNumber: Number of transactions that will be sent into the network;

− rateControl – type: Type of rate;

− opts – tps: Transactions per second;

− workload – module: Path of the javascript file that generates the assets;

Throughout the benchmark phase, this configuration was constantly changed in order to

create new benchmark scenarios and compare them.

To execute caliper, the following command was used in the main folder:

− docker-compose up -d

To follow the Caliper process inside the docker container, the following command was

used:

− docker logs caliper_2.2 -f

Note that in this project, the Caliper container name is caliper_2.2. The container name

should match the name used in the docker-compose.yaml file. To verify the docker containers of

the system currently running the following command was used:

− docker ps

After executing successfully, Hyperledger Caliper will generate a report based on the

configurations used and the functions created. In each report, multiple metrics indicate the

performance of each function of the blockchain:

− Succ - How many transactions were successful;

− Fail – How many transactions were unsuccessful;

− Send Rate (TPS) – How many transactions are sent in a second;

Management and Analysis Platform for Data Based in Blockchain Technology 70

− Max Latency (s) – Maximum read time in seconds of the set of transactions;

− Min Latency (s) – Minimum read time in seconds of the set of transactions;

− Avg Latency (s) – Average read time in seconds of the set of transactions;

− Throughput (TPS) - How many transactions are received in a second;

The following image (Fig. 46) shows an example of a report generated with Hyperledger

Caliper in the course of the project:

Figure 46 - Hyperledger Caliper report

6.6. Prometheus and Grafana

To develop the Prometheus and Grafana part of the project a GitHub repository was

downloaded using the following command (Pavan, n.d.-c):

− git clone https://github.com/hyperledger/caliper-benchmarks.git

After cloning the repository, the folder “/networks/Prometheus-grafana” was copied to the

already existing folder “ContainerisingCaliperForFabricBenchmark/caliper-benchmarks-

local/networks/” in order to integrate Prometheus and Grafana with Hyperledger Caliper. The

following image (Fig. 47) shows the folder structure obtained with the copied folder highlighted in

blue:

https://github.com/hyperledger/caliper-benchmarks.git

Management and Analysis Platform for Data Based in Blockchain Technology 71

Figure 47 - Prometheus folder structure

Inside the “prometheus-grafana” folder there are two yaml files. The name of the “docker-

compose-bare.yaml” file was changed to “docker-compose.yaml” for docker to recognize which

file to use when the container gets initialized.

Inside the “docker-compose.yaml” reside all the container configurations necessary for

docker including the ports in which Prometheus and Grafana are going to run. The ports used were

the following:

− Grafana : ports - 3000:3000

− Prometheus: ports - 9090:9090

These ports must be available otherwise initializing the container may fail. If a port is

already in use simply change the first port to an available one in the local machine.

After everything is set up correctly, the following command was used inside the

“/home/hugo/repo/ContainerisingCaliperForFabricBenchmark/caliper-benchmarks-

local/networks/prometheus-grafana” folder to initialize the containers:

− docker-compose up -d

Management and Analysis Platform for Data Based in Blockchain Technology 72

When the command finishes executing both Prometheus and Grafana must be running.

In this project, Prometheus is available on “http://localhost:9090” and Grafana is available on

“http://localhost:3000”.

The following images (Fig. 48 and Fig. 49) show the results obtained:

Figure 48 – Prometheus

http://localhost:9090/
http://localhost:3000/

Management and Analysis Platform for Data Based in Blockchain Technology 73

Figure 49 – Grafana

7. Benchmarking

This chapter describes the benchmark methodology used in this project as well as all the

benchmarks that were conducted and the respective graphs. A brief analysis of the graphs will be

presented.

Several experiments were carried out to analyze the performance of the proposed

blockchain solution, namely for analyzing the transaction latencies as well as success rates for 1k

transactions and 10k transactions at 40 transactions per second (TPS), and for 100 transactions

at 100 TPS, 1k TPS, and 10k TPS. A benchmarking tool is essential to conduct these types of

experiments. Hyperledger Caliper was used for this very purpose. Hyperledger Caliper is a

blockchain benchmarking tool that allows users to assess a blockchain implementation's

performance against a set of predefined use cases.

Management and Analysis Platform for Data Based in Blockchain Technology 74

In the first experiment, two benchmarks were carried out, with a send rate of 40

transactions per second. In the first, 1000 transactions for each function created were committed

in the network in order to evaluate each function's performance. In the second benchmark, 10000

transactions for each function were made. Note that the first function, Create Beacon, is missing,

this is due to the fact that the first transaction of the benchmark takes substantially more time than

the rest of the transactions making the variation between function metrics harder to visualize.

However, the first function performance has the same behavior as the other functions for both

benchmarks.

Figure 50 - Performance Metrics (1k transactions per function)

Figure 51 - Performance Metrics (10k transactiosn per function)

Management and Analysis Platform for Data Based in Blockchain Technology 75

Analyzing Fig 50 and Fig 51, we can see that moving from 1k transactions to 10k

transactions had a slight increase in the transaction's maximum latency, but the average latency

stayed almost the same. This probably happens since the second benchmark environment applies

more transactions, so there is a bigger chance of one of those transactions taking more time, hence

increasing the max latency value. It can be stated that the number of transactions has almost no

impact on blockchain performance. Get History of Asset is a query function and is significantly

faster than its counterparts, having recorded the lowest maximum, minimum, and average latency

From this result, it can be said that query functions are overall faster in terms of latency than the

asset creation and asset state change functions.

For the second experiment, three benchmarks were carried out for 100 transactions per

function with 100, 1k, and 10k TPS respectively to analyze the Send Rate and Throughput of the

proposed solution. After concluding the three benchmarks, since Hyperledger Caliper outputs the

send rate and throughput of every single function, we calculated the average of both metrics in

order to have a better view of the performance, thus reaching a more significant conclusion. Fig 9

illustrates this analysis.

Figure 52- Average Send Rate vs Throughput

Analyzing Fig 52, we can see that the average sending rate increases with the TPS increase

which is expected. Furthermore, the throughput decreased significantly with the increase of TPS.

Management and Analysis Platform for Data Based in Blockchain Technology 76

This happens because the blockchain system cannot handle the high number of transactions being

sent in a second and fails to commit the transaction. Fig 53 illustrates the average of transactions

that failed per benchmark, which justifies the previous statement.

Figure 53 - Average Failed Transactions

Figure 54 - Max, Min and Average Latency for 100, 1k and 10K TPS

As we can see in Fig 54, the average latency increases substantially from 100 to 1k TPS

and a very slight increase from 1k to 10k TPS.

Management and Analysis Platform for Data Based in Blockchain Technology 77

Note that the computers used to run these types of blockchain systems usually have up to

32 CPU cores per node and true multiprocessing. The machine used for this prototype is not ideal

for this purpose, thus obtaining this kind of result.

The scalability of the system is directly impacted by the number of transactions sent to it

and the processing power of the machine running the system.

In order to determine the blockchain network performance from the perspective of

computational capacity, Prometheus was used to capture system metrics such as CPU usage and

Memory usage, from the running docker containers.

During one of the previous benchmarks, Prometheus captured the results represented in

the following graphics. Note that there was only one system used for this test, which results in

having only one machine running both the blockchain network and the benchmark. This means

that the system resources were shared across all the docker containers, which ultimately influences

the final result. This becomes evident in the following graphic:

Figure 55 - Caliper container CPU usage during a benchmark

Management and Analysis Platform for Data Based in Blockchain Technology 78

Figure 56 - Caliper container memory usage during a benchmark

As we can see in Fig 55 and Fig. 56, the caliper container, which is responsible for running

the benchmark, has a CPU usage spike at around 97% usage and used around 200MB of memory

on average. This has an impact on blockchain performance since the resources allocated for the

caliper container cannot be used for the blockchain-related containers, slowing down the

blockchain network even more.

Figure 57 - All blockchain related containers accumulated memory usage

Management and Analysis Platform for Data Based in Blockchain Technology 79

Figure 58 - All blockchain related containers accumulated CPU usage

As we can see in Fig 57 and Fig 58, the accumulated blockchain CPU usage peaked at

31%, and the memory consumption of all the blockchain-related containers was 1GB. The analysis

of Fig 57 and Fig. 58 allows us to conclude that the resource consumption is directly proportional

to the number of peers existent in the blockchain network. Note that the system will adapt to low

resource availability and slow down. If given more resources the CPU usage and Memory usage

could be significantly higher and the blockchain benchmark significantly faster as well.

The following graphics (Fig 59 to Fig 62) represent the two peers of an organization. As

Peer 0 was used for the API calls, it consumed a substantially higher amount of memory and CPU

than its counterpart. Note that during the benchmark, the memory usage decreases when CPU

usage increases, and increases over again when CPU usage decreases. This probably occurs

because the caliper container which is responsible for conducting the benchmark has priority over

the peer containers, and consumes the memory resources since they are very limited in this

system. An ideal benchmark environment would require the benchmarks and blockchain network

to be running on different machines so that the resources are not shared and limited. Usually,

blockchain systems run in server clusters that have much higher computational capability than the

virtual machine used for these tests.

Management and Analysis Platform for Data Based in Blockchain Technology 80

Figure 59 - Peer 1 Org 1 memory usage

Figure 60 - Peer 1 Org 1 CPU usage

Figure 61 - Peer 0 Org 1 memory usage

Management and Analysis Platform for Data Based in Blockchain Technology 81

Figure 62 - Peer 0 Org 1 CPU usage

Management and Analysis Platform for Data Based in Blockchain Technology 82

8. Conclusion

This dissertation was carried out in order to develop a Blockchain Network and a Rest API

in the healthcare context. Initially, a search about blockchain technology was conducted to collect

information about the intricacies involving blockchain operation, as well as its applications in the

healthcare context. The result of this search aims to select the more efficient blockchain

frameworks to be used in the implementation phase of the research. As a result, the framework

used was Hyperledger Fabric as it is an open-source project which offers all the necessary tools to

deploy a private blockchain. Furthermore, a search was conducted to find which tools for

blockchain benchmarking were the most appropriate. Consequently, both Hyperledger Caliper and

Prometheus were selected to be used in the benchmarking phase of the research. The former was

chosen since it offers powerful metrics, it’s easy to set up, and is developed by Hyperledger, which

makes integration with Hyperledger Fabric easy and seamless. Moreover, another search that aims

to find which tools for blockchain visualization were appropriate, was carried out. As a result,

Blockchain Explorer was chosen for its simple but effective user interface that allows users to have

a general view of the network, as well as see all the blocks and transactions made.

Subsequently, the implementation phase was conducted by installing and deploying

Hyperledger Fabric and the programming of the Smart Contracts that reflect the data structure and

logic of the project. After that, tools for blockchain benchmarking and tools for blockchain

visualization were installed and configured and small tests and changes were made to perfect the

network. For instance, the Smart Contract was developed in different phases to accommodate

changes that allowed the best functioning of the network. Furthermore, benchmarks were defined

and subsequently carried out in order to generate some graphics that allowed the analysis of the

performance of the blockchain network. These benchmarks were defined in two distinct ways: a)

the performance inherent to the blockchain network, such as average latency, throughput, etc; b)

the computational performance of the system running the network such as CPU usage, memory

usage, etc.

The benchmark analysis provided the following results: it can be stated that the number of

transactions has almost no impact on blockchain performance; query functions are overall faster

in terms of latency than the asset creation and asset state change functions; average sending rate

increases with the TPS increase; the blockchain system cannot handle the high number of

transactions being sent in a second and fails to commit the transaction; the scalability of the system

Management and Analysis Platform for Data Based in Blockchain Technology 83

is directly impacted by the number of transactions sent to it and the processing power of the

machine running the system; the resources allocated for the caliper container cannot be used for

the blockchain-related containers, slowing down the blockchain network even more; the peer used

for the API call uses significantly more resources than the other peers; that the resource

consumption is directly proportional to the number of peers existent in the blockchain network.

To conclude, as it was previously stated, the objectives of this project were accomplished

and allowed to develop a functional solution featuring Web API’s and Blockchain.

The final solution provides a tamper-proof and immutable way of storing transactions which

is essential for the Healthcare environment since data veracity must be achieved. Patients can be

tracked through beacons and medical devices which originates an immutable medical history of

the patient. For instance, which rooms have the patient been hospitalized in, and by which doctor

he has been consulted.

Answering the Investigation Question, it can be stated that, by implementing a Blockchain

Network, with well-designed Smart Contracts, which features a REST API that facilitates the

communication between the Blockchain Network and other software, we ensure a tamper-proof,

immutable, controlled, and secured way of storing data in the Healthcare context, given

Blockchain’s inherent characteristics (as it was explained in the state of the art).

For future work, we recommend deploying the developed blockchain network in a cluster

to have a more realistic approach. On one hand, this would create more realistic results in the

benchmarking and, on the other hand, would allow for a wider network since the computational

power provided by the cluster is much greater than a virtual machine in a work computer. Running

a blockchain network in a virtual machine hosted on a work computer is a major conditioning

factor. Furthermore, the development of an android application with a seamless user interface to

be deployed in medical devices that would interact with the currently developed API, which would

complement the project, bringing broad benefits to the Healthcare business.

Management and Analysis Platform for Data Based in Blockchain Technology 84

9. References

Ampel, B., Patton, M., & Chen, H. (2019). Performance modeling of hyperledger sawtooth

blockchain. 2019 IEEE International Conference on Intelligence and Security Informatics, ISI

2019, 59–61. https://doi.org/10.1109/ISI.2019.8823238

Baliga, A. (2017). Understanding Blockchain Consensus Models. Whitepaper.

Bashir, I. (2017). Mastering Blockchain: Deeper insights into decentralization, cryptography,

Bitcoin, and popular Blockchain frameworks. In Packt Publishing.

Brazil, B. (2018). Prometheus : up & running : infrastructure and application performance

monitoring. https://books.google.com/books?id=QW1jDwAAQBAJ

Cachin, C. (2016). Architecture of the Hyperledger Blockchain Fabric. Workshop on Distributed

Cryptocurrencies and Consensus Ledgers (DCCL 2016).

Crosby, M., Nachiappan, Pattanayak, P., Verma, S., & Kalyanaraman, V. (2016). Blockchain

Technology - BEYOND BITCOIN. Berkley Engineering.

https://doi.org/10.1515/9783110488951

Dahmen, G., & Liermann, V. (2019). Hyperledger Composer—Syndicated Loans. In The Impact of

Digital Transformation and FinTech on the Finance Professional.

https://doi.org/10.1007/978-3-030-23719-6_4

Dinh, T. T. A., Liu, R., Zhang, M., Chen, G., Ooi, B. C., & Wang, J. (2018). Untangling Blockchain:

A Data Processing View of Blockchain Systems. IEEE Transactions on Knowledge and Data

Engineering. https://doi.org/10.1109/TKDE.2017.2781227

Fichman, R. G., Kohli, R., & Krishnan, R. (2011). The role of information systems in healthcare:

Current research and future trends. Information Systems Research.

https://doi.org/10.1287/isre.1110.0382

Getting Started - Covalent Documentation. (n.d.). Retrieved January 19, 2020, from

https://docs.covalentx.com/article/71-getting-started

Guimarães, T., Silva, H., Peixoto, H., & Santos, M. (2020). Modular Blockchain Implementation in

Intensive Medicine. Procedia Computer Science, 170, 1059–1064.

https://doi.org/10.1016/j.procs.2020.03.073

Hammi, M. T., Hammi, B., Bellot, P., & Serhrouchni, A. (2018). Bubbles of Trust: A decentralized

blockchain-based authentication system for IoT. Computers and Security.

https://doi.org/10.1016/j.cose.2018.06.004

Management and Analysis Platform for Data Based in Blockchain Technology 85

Hevner, A. R., & Chatterjee, S. (2010). Design Research in Information Systems: Theory and

Practice. In Springer. https://doi.org/10.1007/978-1-4419-6108-2

Hyperledger Caliper Architecture. (n.d.).

https://hyperledger.github.io/caliper/v0.3.2/architecture/

Kuo, T. T., Kim, H. E., & Ohno-Machado, L. (2017). Blockchain distributed ledger technologies for

biomedical and health care applications. In Journal of the American Medical Informatics

Association. https://doi.org/10.1093/jamia/ocx068

Lin, I. C., & Liao, T. C. (2017). A survey of blockchain security issues and challenges. International

Journal of Network Security. https://doi.org/10.6633/IJNS.201709.19(5).01

Meyerson, J. (2014). The go programming language. IEEE Software.

https://doi.org/10.1109/MS.2014.127

Microsoft. (2020). Documentation for Visual Studio Code. Visual Studio Code.

https://code.visualstudio.com/docs

Mohanta, B. K., Jena, D., Panda, S. S., & Sobhanayak, S. (2019). Blockchain technology: A survey

on applications and security privacy Challenges. Internet of Things, 8, 100107.

https://doi.org/10.1016/j.iot.2019.100107

Olleros, F. X., & Zhegu, M. (2016). Research handbooks on digital transformations. In Research

Handbooks on Digital Transformations. https://doi.org/10.4337/9781784717766

OpenJS Foundation. (2020). About Node.js. OpenJS Foundation. https://nodejs.org/en/about/

Pavan, A. (n.d.-a). GitHub - BasicNetwork-2.0. Retrieved February 5, 2021, from

https://github.com/adhavpavan/BasicNetwork-2.0

Pavan, A. (n.d.-b). GitHub - ContainerisingBlockchainExplorer. Retrieved February 5, 2021, from

https://github.com/adhavpavan/ContainerisingBlockchainExplorer

Pavan, A. (n.d.-c). GitHub - ContainerisingCaliperForFabricBenchmark. Retrieved February 5,

2021, from https://github.com/adhavpavan/ContainerisingCaliperForFabricBenchmark

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee. (2008). Peffers et al. (2008) A Design

Science Research Methodology for Information Systems Research. Journal of Management

Information Systems.

Postman Inc. (2021). Postman | The Collaboration Platform for API Development. Postman.Com.

https://www.postman.com/

Prometheus. (2019). Overview | Prometheus. Https://Prometheus.Io/Docs.

https://prometheus.io/docs/introduction/overview/

Management and Analysis Platform for Data Based in Blockchain Technology 86

Singhal, B., Dhameja, G., & Panda, P. S. (2018). Beginning Blockchain – A Beginner’s Guide to

Building Blockchain Solutions. https://doi.org/10.1007/978-1-4842-3444-0

The Linux Foundation. (2020a). Hyperledger Caliper – Hyperledger.

https://www.hyperledger.org/use/caliper

The Linux Foundation. (2020b). Hyperledger Explorer. https://www.hyperledger.org/use/explorer

The Linux Foundation. (2020c). Hyperledger Fabric - Hyperledger.

https://www.hyperledger.org/use/fabric

Victor, J. M. (2013). The EU general data protection regulation: Toward a property regime for

protecting data privacy. In Yale Law Journal.

Viriyasitavat, W., & Hoonsopon, D. (2019). Blockchain characteristics and consensus in modern

business processes. Journal of Industrial Information Integration.

https://doi.org/10.1016/j.jii.2018.07.004

Wang, R., Ye, K., & Xu, C. Z. (2019). Performance Benchmarking and Optimization for Blockchain

Systems: A Survey. In Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11521 LNCS. Springer

International Publishing. https://doi.org/10.1007/978-3-030-23404-1_12

Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An Overview of Blockchain Technology:

Architecture, Consensus, and Future Trends. Proceedings - 2017 IEEE 6th International

Congress on Big Data, BigData Congress 2017.

https://doi.org/10.1109/BigDataCongress.2017.85

Zheng, Z., Xie, S., Dai, H. N., Chen, X., & Wang, H. (2018). Blockchain challenges and

opportunities: A survey. International Journal of Web and Grid Services.

https://doi.org/10.1504/IJWGS.2018.095647

	e62baba5-e073-4fdc-896d-23f83888f048.pdf
	Acknowledgments
	Statement of Integrity
	Abstract
	Resumo
	Index of Tables
	Index of Figures
	Acronyms
	1. Introduction
	1.1. Document Structure

	2. Objectives
	3. State of Art
	3.1. Information Systems in Healthcare
	3.2. Blockchain
	3.2.1. Introduction
	3.2.2. Blockchain Structure
	3.2.3. Public Blockchain – Permissionless
	3.2.4. Private Blockchain – Permissioned
	3.2.5. Private Blockchain vs Public Blockchain
	3.2.6. Consensus Algorithms
	3.2.6.1. Proof of Work (PoW)
	3.2.6.2. Proof of Stake (PoS)
	3.2.6.3. Byzantine Fault Tolerance (PBFT)
	3.2.6.4. Comparative analysis

	3.3. Blockchain in Healthcare
	3.4. Frameworks that support Blockchain development
	3.4.1. Hyperledger Fabric
	3.4.2. Hyperledger Composer
	3.4.3. Hyperledger Convector

	3.5. Tools for Blockchain Benchmarking
	3.5.1. Hyperledger Caliper
	3.5.2. Blockbench
	3.5.3. Prometheus

	4. Research Methodologies
	4.1. Design Science Research

	5. Project Development
	5.1. Tools and Frameworks used
	5.1.1. Hypeledger Fabric
	5.1.2. Hyperledger Caliper
	5.1.3. Prometheus and Grafana
	5.1.4. Blockchain Explorer
	5.1.5. Visual Studio Code
	5.1.6. Go Language
	5.1.7. NodeJS
	5.1.8. Postman

	5.2. Prerequisites

	6. Results and Discussion
	6.1. Network Structure
	6.2. Hyperledger Fabric
	6.3. REST API
	6.3.1. API Architecture
	6.3.2. Register User and Authentication Token
	6.3.3. Create Beacon (createBeacon)
	6.3.4. Create Doctor (createMedico)
	6.3.5. Create Patient (createDoente)
	6.3.6. Create Medical Device (createDispMedico)
	6.3.7. Change Beacon room property (changeBeaconSala)
	6.3.8. Change Patient room property (changeDoenteSala)
	6.3.9. Change Medical Device room property(changeDispMedSala)
	6.3.10. Change Medical Device doctor property (changeDispMedMedico)
	6.3.11. Change Medical Device patient property (changeDispMedDoente)
	6.3.12. Get History of Asset (getHistoryForAsset)

	6.4. Blockchain Explorer
	6.5. Hyperledger Caliper
	6.6. Prometheus and Grafana

	7. Benchmarking
	8. Conclusion
	9. References

